我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

Λ演算和柯里化

快捷方式: 差异相似杰卡德相似系数参考

Λ演算和柯里化之间的区别

Λ演算 vs. 柯里化

λ演算(英語:lambda calculus,λ-calculus)是一套從數學邏輯中發展,以變數綁定和替換的規則,來研究函式如何抽象化定義、函式如何被應用以及遞迴的形式系統。它由數學家阿隆佐·邱奇在20世紀30年代首次發表。Lambda演算作為一種廣泛用途的計算模型,可以清晰地定義什麼是一個可計算函式,而任何可計算函式都能以這種形式表達和求值,它能模擬單一磁帶图灵机的計算過程;儘管如此,Lambda演算強調的是變換規則的運用,而非實現它們的具體機器。 Lambda演算可比擬是最根本的編程語言,它包括了一條變換規則(變數替換)和一條將函式抽象化定義的方式。因此普遍公認是一種更接近軟體而非硬體的方式。對函數式編程語言造成很大影響,比如Lisp、ML语言和Haskell语言。在1936年邱奇利用λ演算給出了對於判定性問題(Entscheidungsproblem)的否定:關於兩個lambda運算式是否等價的命題,無法由一個「通用的演算法」判斷,這是不可判定效能夠證明的頭一個問題,甚至還在停机问题之先。 Lambda演算包括了建構lambda項,和對lambda項執行歸約的操作。在最簡單的lambda演算中,只使用以下的規則來建構lambda項: 產生了諸如:(λx.λy.(λz.(λx.zx)(λy.zy))(x y)的表達式。如果表達式是明確而沒有歧義的,則括號可以省略。對於某些應用,其中可能包括了邏輯和數學的常量以及相關操作。 本文讨论的是邱奇的“无类型lambda演算”,此后,已经研究出来了一些有类型lambda演算。. 在计算机科学中,柯里化(Currying),又译为卡瑞化或加里化,是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数而且返回结果的新函数的技术。这个技术由克里斯托弗·斯特雷奇以逻辑学家哈斯凱爾·加里命名的,尽管它是Moses Schönfinkel和戈特洛布·弗雷格发明的。 在直觉上,柯里化声称「如果你固定某些参数,你将得到接受余下参数的一个函数」。所以对于有两个变量的函数y^x,如果固定了y.

之间Λ演算和柯里化相似

Λ演算和柯里化有1共同点(的联盟百科): 函数

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

Λ演算和函数 · 函数和柯里化 · 查看更多 »

上面的列表回答下列问题

Λ演算和柯里化之间的比较

Λ演算有43个关系,而柯里化有18个。由于它们的共同之处1,杰卡德指数为1.64% = 1 / (43 + 18)。

参考

本文介绍Λ演算和柯里化之间的关系。要访问该信息提取每篇文章,请访问: