我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

Λ演算和SKI组合子演算

快捷方式: 差异相似杰卡德相似系数参考

Λ演算和SKI组合子演算之间的区别

Λ演算 vs. SKI组合子演算

λ演算(英語:lambda calculus,λ-calculus)是一套從數學邏輯中發展,以變數綁定和替換的規則,來研究函式如何抽象化定義、函式如何被應用以及遞迴的形式系統。它由數學家阿隆佐·邱奇在20世紀30年代首次發表。Lambda演算作為一種廣泛用途的計算模型,可以清晰地定義什麼是一個可計算函式,而任何可計算函式都能以這種形式表達和求值,它能模擬單一磁帶图灵机的計算過程;儘管如此,Lambda演算強調的是變換規則的運用,而非實現它們的具體機器。 Lambda演算可比擬是最根本的編程語言,它包括了一條變換規則(變數替換)和一條將函式抽象化定義的方式。因此普遍公認是一種更接近軟體而非硬體的方式。對函數式編程語言造成很大影響,比如Lisp、ML语言和Haskell语言。在1936年邱奇利用λ演算給出了對於判定性問題(Entscheidungsproblem)的否定:關於兩個lambda運算式是否等價的命題,無法由一個「通用的演算法」判斷,這是不可判定效能夠證明的頭一個問題,甚至還在停机问题之先。 Lambda演算包括了建構lambda項,和對lambda項執行歸約的操作。在最簡單的lambda演算中,只使用以下的規則來建構lambda項: 產生了諸如:(λx.λy.(λz.(λx.zx)(λy.zy))(x y)的表達式。如果表達式是明確而沒有歧義的,則括號可以省略。對於某些應用,其中可能包括了邏輯和數學的常量以及相關操作。 本文讨论的是邱奇的“无类型lambda演算”,此后,已经研究出来了一些有类型lambda演算。. SKI组合子演算是一个计算系统,它是对无类型版本的Lambda演算的简约。这个系统声称在Lambda演算中所有运算都可以用三个组合子S、K和I来表达。 在这个系统中的所有函数可以只使用S、K、I的字母表和圆括号(分组符号)来表达。通常假定组合子是左结合的,从而在不影响执行次序的情况下精简表达式中的圆括号。.

之间Λ演算和SKI组合子演算相似

Λ演算和SKI组合子演算有(在联盟百科)4共同点: 函数结合律组合子逻辑递归

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

Λ演算和函数 · SKI组合子演算和函数 · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

Λ演算和结合律 · SKI组合子演算和结合律 · 查看更多 »

组合子逻辑

组合子逻辑是Moses Schönfinkel和哈斯凱爾·加里介入的一种符号系统,用来消除数理逻辑中对变量的需要。它最近在计算机科学中被用做计算的理论模型和设计函数式编程语言的基础。它所基于的组合子是只使用函数应用或早先定义的组合子来定义从它们的参数得出的结果的高阶函数。.

Λ演算和组合子逻辑 · SKI组合子演算和组合子逻辑 · 查看更多 »

递归

递归(Recursion),又译为--,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的。也可以理解为自我复制的过程。.

Λ演算和递归 · SKI组合子演算和递归 · 查看更多 »

上面的列表回答下列问题

Λ演算和SKI组合子演算之间的比较

Λ演算有43个关系,而SKI组合子演算有8个。由于它们的共同之处4,杰卡德指数为7.84% = 4 / (43 + 8)。

参考

本文介绍Λ演算和SKI组合子演算之间的关系。要访问该信息提取每篇文章,请访问: