Γ函数和二項式係數
快捷方式: 差异,相似,杰卡德相似系数,参考。
Γ函数和二項式係數之间的区别
Γ函数 vs. 二項式係數
\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。. 二項式係數在數學上是二項式定理中的係數族。其必然為正整數,且能以兩個非負整數為參數確定,此兩參數通常以n和k代表,並將二項式係數寫作\tbinom nk ,亦即是二項式冪(1 + x) n的多項式展式中,x k項的係數。如將二項式係數的n值順序排列成行,每行為k值由0至n列出,則構成帕斯卡三角形。 此數族亦常見於其他代數學領域中,尤其是組合數學。任何有n個元素的集合,由其衍生出擁有k個元素的子集,即由其中任意k個元素的組合,共有\tbinom nk個。故此\tbinom nk亦常讀作「n選取k」。二項式係數的特性使表達式\tbinom nk的定義不再局限於n和k均為非負整數及,然此等表達式仍被稱為二項式係數。 雖然此數族早已被發現(見帕斯卡三角形),但表達式\tbinom nk則是由安德烈亚斯·冯·厄廷格豪森於1826年始用。最早探討二項式係數的論述是十世紀的Halayudha寫的印度教典籍《Pingala的計量聖典》(chandaḥśāstra),及至約1150年,印度數學家Bhaskaracharya於其著作《Lilavati》Lilavati 第6節,第4章(見)。 中給出一個簡單的描述。 二項式係數亦有不同的符號表達方式,包括:C(n, k)、nCk、nCk、C^_,其中的C代表組合(combinations)或選擇(choices)。.
之间Γ函数和二項式係數相似
Γ函数和二項式係數有(在联盟百科)2共同点: 组合数学,階乘。
广义的组合数学(Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可數或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳組合)等。.
Γ函数和组合数学 · 二項式係數和组合数学 · 查看更多 »
一个正整数的階乘(factorial)是所有小於及等於該數的正整數的積,并且有0的阶乘为1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。 亦即n!.
Γ函数和階乘 · 二項式係數和階乘 · 查看更多 »
上面的列表回答下列问题
- 什么Γ函数和二項式係數的共同点。
- 什么是Γ函数和二項式係數之间的相似性
Γ函数和二項式係數之间的比较
Γ函数有17个关系,而二項式係數有33个。由于它们的共同之处2,杰卡德指数为4.00% = 2 / (17 + 33)。
参考
本文介绍Γ函数和二項式係數之间的关系。要访问该信息提取每篇文章,请访问: