我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

RSA加密演算法和數位簽章

快捷方式: 差异相似杰卡德相似系数参考

RSA加密演算法和數位簽章之间的区别

RSA加密演算法 vs. 數位簽章

RSA加密演算法是一种非对称加密演算法。在公开密钥加密和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。 1973年,在英国政府通讯总部工作的数学家克利福德·柯克斯(Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被發表。 對极大整数做因数分解的难度決定了RSA算法的可靠性。換言之,對一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法的话,那么用RSA加密的--的可靠性就肯定会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA钥匙才可能被强力方式--。到目前为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的--实际上是不能被--的。 1983年9月12日麻省理工学院在美国为RSA算法申请了专利。这个专利2000年9月21日失效。由于该算法在申请专利前就已经被發表了,在世界上大多数其它地区这个专利权不被承认。. 數位簽章(又称公鑰數位簽章,Digital Signature)是一種類似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法。一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证,但法條中的電子簽章與數位簽章,代表之意義並不相同,電子簽章用以辨識及確認電子文件簽署人身分、資格及電子文件真偽者。而數位簽章則是以數學演算法或其他方式運算對其加密,才形成電子簽章,意即使用數位簽章才創造出電子簽章。 数字签名不是指将签名扫描成数字图像,或者用触摸板获取的签名,更不是落款。 数字签名了的文件的完整性是很容易验证的(不需要骑缝章、骑缝签名,也不需要笔迹鑑定),而且数字签名具有不可抵赖性(即不可否認性),不需要笔迹专家来验证。.

之间RSA加密演算法和數位簽章相似

RSA加密演算法和數位簽章有(在联盟百科)2共同点: 公开密钥加密整数分解

公开密钥加密

公开密钥加密(Public-key cryptography),也称为非对称加密(asymmetric cryptography),是密碼學的一種演算法,它需要兩個密钥,一個是公開密鑰,另一個是私有密鑰;一個用作加密的時候,另一個則用作解密。使用其中一個密钥把明文加密后所得的密文,只能用相對應的另一個密钥才能解密得到原本的明文;甚至連最初用來加密的密鑰也不能用作解密。由於加密和解密需要兩個不同的密鑰,故被稱為非對稱加密;不同於加密和解密都使用同一個密鑰的對稱加密。雖然兩個密鑰在数学上相关,但如果知道了其中一个,并不能憑此计算出另外一个;因此其中一个可以公开,称为公钥,任意向外發佈;不公开的密钥为私钥,必須由用戶自行嚴格秘密保管,絕不透過任何途徑向任何人提供,也不會透露給要通訊的另一方,即使他被信任。 基於公開密鑰加密的特性,它還提供數位簽章的功能,使電子文件可以得到如同在紙本文件上親筆簽署的效果。 公開金鑰基礎建設透過信任数字证书认证机构的根证书、及其使用公开密钥加密作數位簽章核發的公開金鑰認證,形成信任鏈架構,已在TLS實作並在万维网的HTTP以HTTPS、在电子邮件的SMTP以STARTTLS引入。 另一方面,信任網絡則採用去中心化的概念,取代了依賴數字證書認證機構的公鑰基礎設施,因為每一張電子證書在信任鏈中最終只由一個根證書授權信任,信任網絡的公鑰則可以累積多個用戶的信任。PGP就是其中一個例子。.

RSA加密演算法和公开密钥加密 · 公开密钥加密和數位簽章 · 查看更多 »

整数分解

在數學中,整數分解(integer factorization)又稱質因數分解(prime factorization),是將一個正整數寫成幾個因數的乘積。例如,給出45這個數,它可以分解成32 ×5。根據算術基本定理,這樣的分解結果應該是獨一無二的。這個問題在代數學、密碼學、計算複雜性理論和量子計算機等領域中有重要意義。.

RSA加密演算法和整数分解 · 整数分解和數位簽章 · 查看更多 »

上面的列表回答下列问题

RSA加密演算法和數位簽章之间的比较

RSA加密演算法有22个关系,而數位簽章有18个。由于它们的共同之处2,杰卡德指数为5.00% = 2 / (22 + 18)。

参考

本文介绍RSA加密演算法和數位簽章之间的关系。要访问该信息提取每篇文章,请访问: