我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

P/NP问题和离散数学

快捷方式: 差异相似杰卡德相似系数参考

P/NP问题和离散数学之间的区别

P/NP问题 vs. 离散数学

P/NP问题是在理论信息学中计算复杂度理论领域里至今未被解决的问题,也是克雷数学研究所七个千禧年大奖难题之一。P/NP问题中包含了复杂度类P与NP的关系。1971年史提芬·古克(Stephen A. Cook)和相对独立地提出了下面的问题,即复杂度类P和NP是否是恒等的(P. 离散数学(Discrete mathematics)是数学的几个分支的总称,研究基于离散空间而不是连续的数学结构。与連續变化的实数不同,离散数学的研究对象——例如整数、图和数学逻辑中的命题——不是連續变化的,而是拥有不等、分立的值。因此离散数学不包含微积分和分析等「连续数学」的内容。离散对象经常可以用整数来枚举。更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括实数集)的数学分支。 。但是,“离散数学”不存在准确且普遍认可的定义。实际上,离散数学经常被定义为不包含连续变化量及相关概念的数学,甚少被定义为包含什么内容的数学。 离散数学中的对象集合可以是有限或者是无限的。有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。 隨著電腦科學的飛速發展,離散數學的重要性則日益彰顯。它為許多資訊科學課程提供了數學基礎,包括資料結構、演算法、資料庫理論、形式語言與作業系統等。如果沒有離散數學的相關數學基礎,學生在學習上述課程中,便會遇到較多的困難。此外,離散數學也包含了解決作業研究、化學、工程學、生物學等眾多領域的數學背景。由於運算對象是離散的,所以電腦科學的數學基礎基本上也是離散的。我們可以說電腦科學的數學語言就是離散數學。人們會使用離散數學裡面的槪念和表示方法,來研究和描述電腦科學下所有分支的對象和問題,如電腦運算、程式語言、密碼學、自動定理証明和軟件開發等。相反地,计算机的應用使離散數學的概念得以應用於日常生活當中(如運籌學)。 虽然离散数学的主要研究对象是离散对象,但是连续数学的分析方法往往也可以采用。数论就是离散和连续数学的交叉学科。同样的,有限拓扑(对有限拓扑空间的研究)从字面上可看作离散化和拓扑的交集。.

之间P/NP问题和离散数学相似

P/NP问题和离散数学有(在联盟百科)6共同点: 千禧年大獎難題复杂性类算法計算複雜性理論NP (複雜度)P (複雜度)

千禧年大獎難題

千禧年大獎難題(Millennium Prize Problems)是七個由美國克雷數學研究所(Clay Mathematics Institute,CMI)於2000年5月24日公佈的數學難題,解题总奖金700万美元。根據克雷數學研究所制定的規則,這一系列挑戰不限時間,題解必須發表在國際知名的出版物上,並經過各方驗證,只要通過兩年驗證期和专家小组审核,每解破一題可獲獎金100万美元deadurl。 這些難題旨在呼應1900年德國數學家大衛·希爾伯特在巴黎提出的23個歷史性數學難題,經過一百年,约17个難題至少已被部分解答。而千禧年大獎難題的破解,極有可能為密碼學、航天、通訊等領域帶來突破性進展。 迄今为止,在七个问题中,庞加莱猜想是唯一被解决的,2003年,俄罗斯数学家格里戈里·佩雷尔曼证明了它的正确性。而其它六道难题仍有待研究者探索。.

P/NP问题和千禧年大獎難題 · 千禧年大獎難題和离散数学 · 查看更多 »

复杂性类

在計算複雜度理論中,一個複雜度類指的是一群複雜度類似的問題的集合。一個典型的複雜度類的定義有以下--: 例如'''NP'''類就是一群可以被一非確定型圖靈機以多項式時間解決的決定型問題。而P類則是一群可以被確定型圖靈機以多項式時間解決的決定型問題。某些複雜度類是一群函式問題(Function problem)的集合,例如'''FP'''。 許多複雜度類可被描述它的數學邏輯(mathematical logic)特徵化,請見可描述的複雜度(descriptive complexity)。 而Blum公理用於不需實際計算模型就可定義複雜度類的情況。.

P/NP问题和复杂性类 · 复杂性类和离散数学 · 查看更多 »

算法

-- 算法(algorithm),在數學(算學)和電腦科學之中,為任何良定义的具體計算步驟的一个序列,常用於計算、和自動推理。精確而言,算法是一個表示爲有限長列表的。算法應包含清晰定義的指令用於計算函數。 算法中的指令描述的是一個計算,當其時能從一個初始狀態和初始輸入(可能爲空)開始,經過一系列有限而清晰定義的狀態最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化算法在内的一些算法,包含了一些隨機輸入。 形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,並在其后尝试定义或者中成形。这些尝试包括库尔特·哥德尔、雅克·埃尔布朗和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義爲形式化算法的情況。.

P/NP问题和算法 · 离散数学和算法 · 查看更多 »

計算複雜性理論

计算复杂性理论(Computational complexity theory)是理论计算机科学和数学的一个分支,它致力于将可计算问题根据它们本身的复杂性分类,以及将这些类别联系起来。一个可计算问题被认为是一个原则上可以用计算机解决的问题,亦即这个问题可以用一系列机械的数学步骤解决,例如算法。 如果一个问题的求解需要相当多的资源(无论用什么算法),则被认为是难解的。计算复杂性理论通过引入数学计算模型来研究这些问题以及定量计算解决问题所需的资源(时间和空间),从而将资源的确定方法正式化了。其他复杂性测度同样被运用,比如通信量(应用于通信复杂性),电路中门的数量(应用于电路复杂性)以及中央处理器的数量(应用于并行计算)。计算复杂性理论的一个作用就是确定一个能或不能被计算机求解的问题的所具有的实际限制。 在理论计算机科学领域,与此相关的概念有算法分析和可计算性理论。两者之间一个关键的区别是前者致力于分析用一个确定的算法来求解一个问题所需的资源量,而后者则是在更广泛意义上研究用所有可能的算法来解决相同问题。更精确地说,它尝试将问题分成能或不能在现有的适当受限的资源条件下解决这两类。相应地,在现有资源条件下的限制正是区分计算复杂性理论和可计算性理论的一个重要指标:后者关心的是何种问题原则上可以用算法解决。.

P/NP问题和計算複雜性理論 · 离散数学和計算複雜性理論 · 查看更多 »

NP (複雜度)

非定常多项式(non-deterministic polynomial,缩写:NP)时间复杂性类,或称非确定性多项式时间复杂性类,包含了可以在多项式时间内,对一个判定性算法问题的实例,一个给定的解是否正确的算法问题。 NP是计算复杂性理论中最重要的复杂性类之一。它包含复杂性类P,即在多项式时间内可以验证一个算法问题的实例是否有解的算法问题的集合;同时,它也包含NP完全问题,即在NP中“最难”的问题。计算复杂性理论的中心问题,P/NP问题即是判断对任意的NP完全问题,是否有有效的算法,或者NP与P是否相等。.

NP (複雜度)和P/NP问题 · NP (複雜度)和离散数学 · 查看更多 »

P (複雜度)

在計算複雜度理論中,P 是在複雜度類問題中可於決定性圖靈機以多項式量級(或稱多項式時間)求解的決定性問題。 P通常表示那類可以"有效率地解決"或"溫馴"的可計算型問題,就算指數級非常高也可以算作"溫馴",例如RP與BPP問題。當然P類存在很多現實處理上一點也不溫馴的問題,例如一些至少需要n1000000指令來解決的問題。很多情況下存在著更難的複雜度問.

P (複雜度)和P/NP问题 · P (複雜度)和离散数学 · 查看更多 »

上面的列表回答下列问题

P/NP问题和离散数学之间的比较

P/NP问题有36个关系,而离散数学有104个。由于它们的共同之处6,杰卡德指数为4.29% = 6 / (36 + 104)。

参考

本文介绍P/NP问题和离散数学之间的关系。要访问该信息提取每篇文章,请访问: