我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

Maple和级数

快捷方式: 差异相似杰卡德相似系数参考

Maple和级数之间的区别

Maple vs. 级数

Maple是一个通用型的商用计算机代数系統。Maple起源于1988年,由加拿大安大略滑铁卢的一家公司,Waterloo Maple Inc.(亦称Maplesoft枫软)进行开发和商业销售。最新版是Maple 2018。它的主要竞争者是Mathematica。 目前共有五個版本:Personal(個人版),Professional(專業版),Academic(學術版),Government(政府版)和Student(學生版)。 2009年,枫软被日本软件商Cybernet Systems收购。. 在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

之间Maple和级数相似

Maple和级数有1共同点(的联盟百科): 矩阵

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

Maple和矩阵 · 矩阵和级数 · 查看更多 »

上面的列表回答下列问题

Maple和级数之间的比较

Maple有23个关系,而级数有79个。由于它们的共同之处1,杰卡德指数为0.98% = 1 / (23 + 79)。

参考

本文介绍Maple和级数之间的关系。要访问该信息提取每篇文章,请访问: