之间LED燈和电阻相似
LED燈和电阻有(在联盟百科)3共同点: 半导体,能隙,電壓。
半导体
半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.
能隙
能隙(band gap或energy gap)也譯作能帶隙(energy band gap)、禁带--宽度(width of forbidden band),在固態物理學中泛指半導體或是絕緣體的價帶頂端至傳導帶底端的能量差距。 對一個zh-cn:本征半导体;zh-hk:本徵半導體;zh-tw:本質半導體;-而言,其導電性與能隙的大小有關,只有獲得足夠能量的電子才能從價帶被激發,跨過能隙並躍遷至傳導帶。利用費米-狄拉克統計可以得到電子佔據某個能階E_0的機率。又假設E_0>>E_F,E_F是所謂的費米能階,電子佔據E_0的機率可以利用波茲曼近似簡化為: 在上式中,E_g是能隙的寬度、k是波茲曼常數,而T則是溫度。 半導體材料的能隙可以利用一些工程手法加以調整,特別是在化合物半導體中,例如控制砷化鎵鋁(AlGaAs)或砷化鎵銦(InGaAs)各種元素間的比例,或是利用如分子束磊晶(Molecular Beam Epitaxy, MBE)成長出多層的磊晶材料。這類半導體材料在高速半導體元件或是光電元件,如-zh-cn:异质结双极性晶体管;zh-tw:異質接面雙載子電晶體;-(Heterojunction Bipolar Transistor, HBT)、zh-hans:激光二极管;zh-hk:激光二極管;zh-tw:雷射二極體;-,或是太陽能電池上已經成為主流。.
電壓
電壓(Voltage,electric tension或 electric pressure),也稱作電位差(electrical potential difference),是衡量单位电荷在静电场中由于電勢不同所產生的能量差的物理量。此概念與水位高低所造成的「水壓」相似。需要指出的是,“电压”一词一般只用于电路当中,“電動勢”和“电位差”则普遍应用于一切电现象当中。 電壓的國際單位是伏特(V)。1伏特等於對每1庫侖的電荷做了1焦耳的功,即U(V).
上面的列表回答下列问题
- 什么LED燈和电阻的共同点。
- 什么是LED燈和电阻之间的相似性
LED燈和电阻之间的比较
LED燈有45个关系,而电阻有71个。由于它们的共同之处3,杰卡德指数为2.59% = 3 / (45 + 71)。
参考
本文介绍LED燈和电阻之间的关系。要访问该信息提取每篇文章,请访问: