我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

K3曲面和覆疊空間

快捷方式: 差异相似杰卡德相似系数参考

K3曲面和覆疊空間之间的区别

K3曲面 vs. 覆疊空間

在數學領域的代數幾何及複流形理論中,K3曲面是一類重要的緊複曲面,在此「曲面」係指複二維,視作實流形則為四維。 K3曲面與二維複環面構成二維的卡拉比-丘流形。複幾何所探討的K3曲面通常不是代數曲面;然而這類曲面首先出現於代數幾何,並以恩斯特·庫默爾、埃里希·卡萊爾與小平邦彥三位姓氏縮寫為 K 的代數幾何學家命名,也與1950年代被命名的K2峰相映成趣。. 在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.

之间K3曲面和覆疊空間相似

K3曲面和覆疊空間有(在联盟百科)2共同点: 單連通流形

單連通

在拓撲學中,單連通是拓撲空間的一種性質。直觀地說,單連通空間中所有閉曲線都能連續地收縮至一點。此性質可以由空間的基本群刻劃。.

K3曲面和單連通 · 單連通和覆疊空間 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

K3曲面和流形 · 流形和覆疊空間 · 查看更多 »

上面的列表回答下列问题

K3曲面和覆疊空間之间的比较

K3曲面有14个关系,而覆疊空間有11个。由于它们的共同之处2,杰卡德指数为8.00% = 2 / (14 + 11)。

参考

本文介绍K3曲面和覆疊空間之间的关系。要访问该信息提取每篇文章,请访问: