我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

G蛋白偶联受体和谷氨酸

快捷方式: 差异相似杰卡德相似系数参考

G蛋白偶联受体和谷氨酸之间的区别

G蛋白偶联受体 vs. 谷氨酸

G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs),是一大类膜蛋白受体的统称。这类受体的共同点是其立体结构中都有七个跨膜α螺旋,且其肽链的C端和连接第5和第6个跨膜螺旋的胞内环上都有G蛋白(鸟苷酸结合蛋白)的结合位点。目前为止,只在真核生物中发现了G蛋白偶联受体。它们参与了很多细胞信号转导过程。在这些过程中,G蛋白偶联受体能结合细胞周围环境中的化学物质并激活细胞内的一系列信号通路,最终引起细胞状态的改变。已知的与G蛋白偶联受体结合的配体包括气味分子,费洛蒙,荷尔蒙,神经递质,趋化因子等等。这些受体可以是小分子的糖类,脂质,多肽,也可以是蛋白质等生物大分子。一些特殊的G蛋白偶联受体也可以被非化学性的刺激源激活,例如在感光细胞中的视紫红质可以被光所激活。与G蛋白偶联受体相关的疾病为数众多,并且大约40%的现代药物都以G蛋白偶联受体作为靶点。 G蛋白偶联受体的下游信号通路有多种。与配体结合的G蛋白偶联受体会发生构象变化,从而表现出鸟苷酸交换因子(GEF)的特性,通过以三磷酸鸟苷(GTP)交换G蛋白上本来结合着的二磷酸鳥苷(GDP)使G蛋白的α亚基与β、γ亚基分离。这一过程使得G蛋白(特别地,指其与GTP结合着的α亚基)变为激活状态,并参与下一步的信号传递过程。具体的传递通路取决于α亚基的种类(、、、)。其中主要的两个通路分别以由三磷酸腺苷环化产生的环腺苷酸(cAMP)和由磷脂酰肌醇-4,5-二磷酸(PIP2)水解生成的肌醇三磷酸(IP3)和甘油二酯(DAG)作为第二信使, 详见环腺苷酸信号通路和磷脂酰肌醇信号通路。. 谷氨酸(英語:Glutamic acid)是α-氨基戊二酸是组成生物体内各种蛋白质的20種氨基酸之一。.

之间G蛋白偶联受体和谷氨酸相似

G蛋白偶联受体和谷氨酸有(在联盟百科)2共同点: 神经递质蛋白质

神经递质

经递质(neurotransmitter),有时简称“递质”或译作神经传递素,常用译名还包括神經傳導物質、神經傳達物質、脑内物质等,是在神经元、肌细胞或感受器间的化学突触中充当信使作用的特殊的机体内生的分子。神经递质在神经、肌肉和感觉系统的各个角落都有分布,是动物的正常生理功能的重要一环。截止1998年,在大脑内大约有45种不同的神经递质已被确认。.

G蛋白偶联受体和神经递质 · 神经递质和谷氨酸 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

G蛋白偶联受体和蛋白质 · 蛋白质和谷氨酸 · 查看更多 »

上面的列表回答下列问题

G蛋白偶联受体和谷氨酸之间的比较

G蛋白偶联受体有88个关系,而谷氨酸有8个。由于它们的共同之处2,杰卡德指数为2.08% = 2 / (88 + 8)。

参考

本文介绍G蛋白偶联受体和谷氨酸之间的关系。要访问该信息提取每篇文章,请访问: