我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

Delta位勢壘和機率幅

快捷方式: 差异相似杰卡德相似系数参考

Delta位勢壘和機率幅之间的区别

Delta位勢壘 vs. 機率幅

在量子力學裏,Delta位勢壘是一個壘內位勢為狄拉克Delta函數,壘外位勢為0的位勢壘。Delta位勢壘問題專門研討,在這種位勢的作用中,一個移動的粒子的量子行為。我們想要知道的是,在被Delta位勢壘散射的狀況下,粒子的反射係數與透射係數。在許多量子力學的教科書裏,這是一個常見的習題。. 在量子力學裏,機率幅,又稱為量子幅,是一個描述粒子的量子行為的複函數。例如,機率幅可以描述粒子的位置。當描述粒子的位置時,機率幅是一個波函數,表達為位置的函數。這波函數必須符合薛丁格方程。 一個機率幅\psi\,\!的機率密度函數是 \psi^*\psi\,\!,等於 \mid\psi\mid^2\,\!,又稱為機率密度。在使用前,不一定要將機率密度函數歸一化。尚未歸一化的機率密度函數可以給出關於機率的相對大小的資訊。 假若,在整個三維空間內,機率密度 \mid\psi\mid^2\,\!是一個有限積分。那麼,可以計算一個歸一常數 c\,\!,替代 \psi\,\!為 c\psi\,\!,使得有限積分等於1。這樣,就可以將機率幅歸一化。粒子存在於某一個特定區域V\,\!內的機率是 \mid\psi\mid^2\,\!在區域V\,\!的積分。這句話的含義是,根據量子力學的哥本哈根詮釋,假若,某一位觀察者試著測量這粒子的位置。他找到粒子在 \varepsilon\,\!區域內的機率 P(\varepsilon)\,\!是 不光局限於粒子觀,機率幅的絕對值平方可以詮釋為「在某時間、某位置發生相互作用的概率」。.

之间Delta位勢壘和機率幅相似

Delta位勢壘和機率幅有(在联盟百科)3共同点: 薛定谔方程量子力学波函数

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

Delta位勢壘和薛定谔方程 · 機率幅和薛定谔方程 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

Delta位勢壘和量子力学 · 機率幅和量子力学 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

Delta位勢壘和波函数 · 機率幅和波函数 · 查看更多 »

上面的列表回答下列问题

Delta位勢壘和機率幅之间的比较

Delta位勢壘有18个关系,而機率幅有14个。由于它们的共同之处3,杰卡德指数为9.38% = 3 / (18 + 14)。

参考

本文介绍Delta位勢壘和機率幅之间的关系。要访问该信息提取每篇文章,请访问: