徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

DNA甲基化和基因

快捷方式: 差异相似杰卡德相似系数参考

DNA甲基化和基因之间的区别

DNA甲基化 vs. 基因

DNA甲基化(DNA methylation)為DNA化學修飾的一種形式,能在不改變DNA序列的前提下,改變遺傳表現。為外遺傳編碼(epigenetic code)的一部分,是一種外遺傳機制。DNA甲基化過程會使甲基添加到DNA分子上,例如在胞嘧啶環的5'碳上:這種5'方向的DNA甲基化方式可見於所有脊椎動物。 在人類細胞內,大約有1%的DNA鹼基受到了甲基化。在成熟體細胞組織中,DNA甲基化一般發生於CpG雙核苷酸(CpG dinucleotide)部位;而非CpG甲基化則於胚胎幹細胞中較為常見 。植物體內胞嘧啶的甲基化則可分為對稱的CpG(或CpNpG),或是不對稱的CpNpNp形式(C與G是鹼基;p是磷酸根;N指的是任意的核苷酸)。 特定胞嘧碇受甲基化的情形,可利用亞硫酸鹽定序(bisulfite sequencing)方式測定。DNA甲基化可能使基因沉默化,進而使其失去功能。此外,也有一些生物體內不存在DNA甲基化作用。. 基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.

之间DNA甲基化和基因相似

DNA甲基化和基因有(在联盟百科)3共同点: 人類表觀遺傳學脱氧核糖核酸

人類

#重定向 人.

DNA甲基化和人類 · 人類和基因 · 查看更多 »

表觀遺傳學

表觀遺傳學(英语:epigenetics)又譯為表徵遺傳學、擬遺傳學、表遺傳學、外遗传学以及後遺傳學,在生物学和特定的遗传学领域,其研究的是在不改变DNA序列的前提下,通过某些机制引起可遗传的基因表达或细胞表现型的变化。 表徵遗传学是20世纪80年代逐渐兴起的一门学科,是在研究与经典的孟德尔遗传学遗传法则不相符的许多生命现象过程中逐步发展起来的。 表徵遗传现象包括DNA、RNA干扰、组蛋白修饰等。与经典遗传学以研究基因序列影响生物学功能为核心相比,表徵遗传学主要研究这些“表徵遗传现象”建立和维持的机制。其研究内容主要包括两类,一类为基因选择性转录表达的调控,有DNA甲基化、基因印记、组蛋白共价修饰和染色质重塑;另一类为基因转录后的调控,包括基因组中非编码RNA、微小RNA、反义RNA、内含子及核糖开关等。 表徵遗传学指基因组相关功能改变而不涉及核苷酸序列变化。例如DNA和组蛋白修饰,两者均能在不改变DNA序列的前提下调节基因的表达;阻遏蛋白通过结合沉默基因从而控制基因的表达。这些变化可能可以通过细胞分裂而得以保留,并且可能持续几代。这些变化都仅是非基因因素导致的生物体基因表现(或“自我表达”)的不同,由于目前尚不清楚组蛋白的化学修饰是否可遗传,有人对于用此术语描述组蛋白化学修饰提出了异议。 表徵遗传学在真核生物中主要表现在细胞分化过程。在胚胎形态形成过程中,全能干细胞将分化成完全不同的细胞,也就是说,一个受精卵细胞分化出各种不同类型的细胞,包括神经细胞、肌肉细胞、上皮细胞、血管内皮细胞等,并通过抑制其他细胞和激活相关基因而进行持续的细胞分裂。 2011年的相关研究已证实,mRNA甲基化对人体内能量平衡发挥着至关重要的作用,对RNA上的N6-甲基腺苷进行脱甲基治疗可控制FTO基因相关肥胖症,并因此而开创了RNA表徵遗传学的相关领域。.

DNA甲基化和表觀遺傳學 · 基因和表觀遺傳學 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

DNA甲基化和脱氧核糖核酸 · 基因和脱氧核糖核酸 · 查看更多 »

上面的列表回答下列问题

DNA甲基化和基因之间的比较

DNA甲基化有12个关系,而基因有141个。由于它们的共同之处3,杰卡德指数为1.96% = 3 / (12 + 141)。

参考

本文介绍DNA甲基化和基因之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »