徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

B型主序星和特殊恆星

快捷方式: 差异相似杰卡德相似系数参考

B型主序星和特殊恆星之间的区别

B型主序星 vs. 特殊恆星

B型主序星(B V)是燃燒氫的恆星,光譜分類為B,光度分類為V的主序星。這一類恆星的質量介於太陽的2至16倍,表面溫度載10,000至30,000K。B型恆星是非常明亮的藍色恆星。它們的光譜中有中性的氦線,在B2的類型中最為明顯,和溫和的氫線。例如,軒轅十四和大陵五A。 這種恆星的哈佛光譜分類法刊登在哈佛恒星测光表修订版。在定義上,B型恆星在光譜的藍紫色部分缺少一條氦的電離譜線,也就是沒有氦的電離譜線。所有的光譜類型,包括B型,都有細分的數值尾碼,表示它們與下一種類型接近的程度,因此B2是B型十分級中的第二級,比B0更接近A型。 但是,之後更精細的光譜顯示B0有氦的電離譜線;同樣的,A0也有微弱的中性氦線。隨後細分的光譜類型基於特定頻率的吸收線在恆星中強度,或是比較不同譜線的強度。例如,在MK分類系統中,波長438.7奈米的譜線強度比420.0奈米強的歸類為B0型。氫的巴耳末系譜線在B型中逐漸增強,並在A2型達到峰值(最大值)。電離的矽現被用來矽分B型的恆星,同時鎂線被用來區分溫度上的差異。 B型恆星在大氣層之外沒有冕,並且缺乏對流層。它們比較小的恆星,像太陽這一種,有更高的質量流失率,恆星風的速度大約是3,000公里/秒。B型主序星的能量來源是CNO循環的熱核融合。因為CNO循環對溫度非常敏感,能量的來源大量的集中在這類恆星的核心,結果是對流層出現在核心。這導致核融合產生的氦穩定的與氫燃料混合在一起。許多B型恆星有高速的自轉,在赤道的轉動速度大約是200公里/秒。 有些B型恆星,像是分類為B0至B3的恆星,顯示出有非常強的中性氦譜線。這些化學特殊恆星未稱為強氦恆星,通常他們在光球層會有強大的磁場。對照之下,也有弱氦恆星,它們的氦線強度不足並且有很強的氫光譜。其他化學異常的B型恆星有汞-錳星,它們的光譜類型是B7至B9。Y最後,還有有著途出的氫發射譜線的Be星。. 特殊恆星,在天文學上是指金屬豐度,至少在它們的表面上是異常的恆星。 化學特殊星(Chemically peculiar stars)在炙熱的主序星(氫燃燒)中是很普遍的。根據他們的光譜,這些炙熱的特殊星被畫分為4大類:金屬線星(Am,CP1)、A型特殊星(Ap,CP2)、汞-錳星(CP3)、和弱氦星(CP4),這些分類的名稱表明了它們特殊的性質。弱氦星會只含有少量的氦(He),汞錳星在光譜中有強烈的汞(Hg)和錳(Mn)的吸收線,金屬線星有強烈的金屬線和微弱的鈣(Ca)和钪(Sc)線,A型特殊星有強磁場和強烈的硅(Si)、铬(Cr)、锶(Sr),铕(Eu)及其他的吸收線。有些還會呈現兩種以上類型的特徵。 一般認為這些炙熱的主序星被觀察到的表面特殊組成是在恆星形成之後才發生的過程中造成的,像是在表面數層的擴散和磁性作用。這些作用導致有些原本該"定居"在表層的元素進入內層,而有些應該在內部的元素"漂浮"到表面,結果造成觀測上看見的有著特殊譜線的恆星。它被假設在恆星的中心和整個恆星的大塊組成上,與正常的化學物質充分的混合,因而反應出它們所形成的氣體成分。 低溫的恆星也有化學組成特殊星(通常,這些恆星都是光譜類型G或更後的類型),但通常這星恆星都不是主序星。通常會對這一類恆星分類或具體的標示出名稱來確認。化學特殊星這個詞彙如果沒有進一步的描述或說明,通常意味著是前述的炙熱主序星中的成員。 許多冷的化學組成特殊星是內部核融合的產物與表面混合的結果;包括大部分的碳星和S-型星。其他的還有在聯星系統的質量轉移,例如鋇星和一些S星。.

之间B型主序星和特殊恆星相似

B型主序星和特殊恆星有(在联盟百科)3共同点: 主序星汞-錳星

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

B型主序星和主序星 · 主序星和特殊恆星 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

B型主序星和氢 · 氢和特殊恆星 · 查看更多 »

汞-錳星

汞-錳星是光譜中因為游離汞的吸收而明顯的有波長為398.4奈米吸收線的化學異常星 ,這些恆星的光譜類型為B8或B9,並有下列二種特徵:.

B型主序星和汞-錳星 · 汞-錳星和特殊恆星 · 查看更多 »

上面的列表回答下列问题

B型主序星和特殊恆星之间的比较

B型主序星有20个关系,而特殊恆星有20个。由于它们的共同之处3,杰卡德指数为7.50% = 3 / (20 + 20)。

参考

本文介绍B型主序星和特殊恆星之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »