我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

3-流形和基本群

快捷方式: 差异相似杰卡德相似系数参考

3-流形和基本群之间的区别

3-流形 vs. 基本群

數學上,3-流形(3-manifold)是三維流形。在三維情況,拓撲流形、分段線性流形、光滑流形三個範疇都等價,因此很少會著意提及3-流形是屬於哪一類。 三維中的現象,不時會與其他維數中的現象有大出意外的差別,所以有不少極專門的技術處理三維情況,不能推廣至其他維數。3-流形的特殊性,使人發現3-流形和很多不同領域有緊密關係,比如紐結理論、幾何群論、雙曲幾何、數論、拓撲量子場論、規範場論、Floer同調論、偏微分方程。3-流形理論是低維拓撲學的一部份,故此屬於幾何拓撲學。 3-流形理論的一個關鍵想法是考慮嵌入到流形內的特殊曲面。選擇嵌入「良好」的曲面,引出了不可壓縮曲面和哈肯(Haken)流形概念。選擇嵌入曲面使補集的各塊都「良好」,得出了比如Heegaard分解的結構,即使在非哈肯情況也有用場。 3-流形常有一個額外的結構:威廉·瑟斯頓的八種標準幾何結構之一。(其中以雙曲幾何最為普遍。)使用這些幾何結構再加上特別曲面,常得到豐碩的成果。 3-流形的基本群包含3-流形不少的幾何和拓撲資料,因此群論和拓撲方法得以相輔相成。. 在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

之间3-流形和基本群相似

3-流形和基本群有1共同点(的联盟百科): 流形

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

3-流形和流形 · 基本群和流形 · 查看更多 »

上面的列表回答下列问题

3-流形和基本群之间的比较

3-流形有11个关系,而基本群有26个。由于它们的共同之处1,杰卡德指数为2.70% = 1 / (11 + 26)。

参考

本文介绍3-流形和基本群之间的关系。要访问该信息提取每篇文章,请访问: