之间1 − 2 + 3 − 4 + …和巴塞尔问题相似
1 − 2 + 3 − 4 + …和巴塞尔问题有(在联盟百科)5共同点: 伯努利数,级数,萊昂哈德·歐拉,黎曼ζ函數,泰勒级数。
伯努利数
數學上,白努利數 是一個與數論有密切關聯的有理數序列。前幾項被發現的白努利數分別為: 上標 ± 在本文中用來區別兩種不同的白努利數定義,而這兩種定義只有在 時有所不同:.
1 − 2 + 3 − 4 + …和伯努利数 · 伯努利数和巴塞尔问题 ·
级数
在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.
1 − 2 + 3 − 4 + …和级数 · 巴塞尔问题和级数 ·
萊昂哈德·歐拉
莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.
1 − 2 + 3 − 4 + …和萊昂哈德·歐拉 · 巴塞尔问题和萊昂哈德·歐拉 ·
黎曼ζ函數
黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.
1 − 2 + 3 − 4 + …和黎曼ζ函數 · 巴塞尔问题和黎曼ζ函數 ·
泰勒级数
在数学中,泰勒级数(Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英國数学家布魯克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 拉格朗日在1797年之前,最先提出帶有餘項的現在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。开区间(或复平面开片)上,与自身泰勒级数相等的函数称为解析函数。.
上面的列表回答下列问题
- 什么1 − 2 + 3 − 4 + …和巴塞尔问题的共同点。
- 什么是1 − 2 + 3 − 4 + …和巴塞尔问题之间的相似性
1 − 2 + 3 − 4 + …和巴塞尔问题之间的比较
1 − 2 + 3 − 4 + …有52个关系,而巴塞尔问题有28个。由于它们的共同之处5,杰卡德指数为6.25% = 5 / (52 + 28)。
参考
本文介绍1 − 2 + 3 − 4 + …和巴塞尔问题之间的关系。要访问该信息提取每篇文章,请访问: