1-形式和向量空间
快捷方式: 差异,相似,杰卡德相似系数,参考。
1-形式和向量空间之间的区别
1-形式 vs. 向量空间
在线性代数中,1-形式(one-form)是向量空间上的一種线性泛函。1-形式在这种向量空间语境中的使用方式,通常区别於高阶的多重线性泛函中的1-形式。细节参见线性泛函。 在微分几何中,可微流形上的1-形式是余切丛的一个光滑截面。具体说来,流形 M 上的1-形式是M 的切丛的全空间到 R 的一个光滑映射,限制在每个纤维上是切空间上的线性泛函。用符号表示, 这里 αx 是线性的。 1-形式经常局部地描述,特别是在一个局部坐标中。在一个局部坐标系中,1-形式是坐标的微分的线性组合: 这里 fi 是光滑函数。注意这里使用上指标,不要与幂混淆。从这种观点来看,一个 1-形式从一个坐标系变到另一个时有共变变换法则。从而一个 1-形式是秩 1 共变张量场。. 向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
之间1-形式和向量空间相似
1-形式和向量空间有1共同点(的联盟百科): 线性代数。
线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.
1-形式和线性代数 · 向量空间和线性代数 · 查看更多 »
上面的列表回答下列问题
- 什么1-形式和向量空间的共同点。
- 什么是1-形式和向量空间之间的相似性
1-形式和向量空间之间的比较
1-形式有22个关系,而向量空间有36个。由于它们的共同之处1,杰卡德指数为1.72% = 1 / (22 + 36)。
参考
本文介绍1-形式和向量空间之间的关系。要访问该信息提取每篇文章,请访问: