我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

0.999…和数学

快捷方式: 差异相似杰卡德相似系数参考

0.999…和数学之间的区别

0.999… vs. 数学

在數學的完备实数系中,循环小数0.999…,也可写成0.\overline、0.\dot或0.(9),表示一个等於1的实数,即「0.999…」所表示的数与「1」相同。目前該等式已经有各式各样的證明式;它们各有不同的嚴謹性、背景假设,且都蕴含实数的实质条件,即阿基米德公理、历史文脉、以及目标受众。 这类展开式的非唯一性不仅限於十进制系统,相同的现象也出现在其它的整数进位制中,数学家们也列举出了一些1在非整数进位制中的写法,这种现象也不是仅仅限於1的:对於每一个非零的有限小数,都存在另一种含有无穷多个9的写法,由於简便的原因,我们几乎肯定使用有限小數的写法,这样就更加使人们误以为没有其它写法了,实际上,一旦我们允许使用无限小数,那么在所有的进位制中都有无穷多种替代的写法,例如,18.3287与18.3286999…、18.3287000…,以及许多其它的写法,都表示相同的数,这些各种各样的等式被用来更好地理解分數的小数展开式的规律,以及一个简单-zh:分形; zh-hans:分形; zh-hant:碎形-图形──康托尔集合的结构,它们也出现在一个对整个实数的无穷集合的--研究之中。 在过去數十年裡,許多数学教育的研究人员研究了大眾及学生们对该等式的接受程度,许多学生在學習开始時怀疑或拒絕该等式,而後許多学生被老師、教科书和如下章節的算術推論說服接受两者是相等的,儘管如此,許多人們仍常感到懷疑,而提出进一步的辯解,這經常是由於存在不少對數學实数錯誤的觀念等的背後因素(參見以下教育中遇到的懷疑一章節),例如認為每一个实数都有唯一的一个小数展开式,以及認為無限小(无穷小)不等於0,並且將0.999…视为一个不定值,即該值只是一直不斷無限的微微擴張變大,因此与1的差永遠是無限小而不是零,因此「永遠都差一點」。我们可以构造出符合這些直觀的數系,但是只能在用於初等数学或多數更高等數學中的标准实数系统之外进行,的確,某些設計含有「恰恰小於1」的数,不過,这些数一般与0.999…无关(因为与之相关的理论上和实践上都皆無實質用途),但在数学分析中引起了相当大的關注。. 数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

之间0.999…和数学相似

0.999…和数学有(在联盟百科)21共同点: 加法实变函数论实数乘法序理论代数结构分形全序关系算术素数證明自然数集合论除法极限 (数学)減法数学分析数论数据压缩整数

加法

加法是基本的算术運算。加法即是將二個以上的數,合成一個數,其結果称為和。加法與減、乘、除合稱「四則運算」。 表達加法的符號為加號(+)。進行加法時以加號將各項連接起來。把和放在等號(.

0.999…和加法 · 加法和数学 · 查看更多 »

实变函数论

實分析或實數分析是處理實數及實函數的數學分析。專門實數函數及數列的解析特性,包括實數數列的極限,實函數的微分及積分、連續性,光滑性以及其他相關性質。 實分析常以基礎集合論,函數概念定義等等開始。.

0.999…和实变函数论 · 实变函数论和数学 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

0.999…和实数 · 实数和数学 · 查看更多 »

乘法

乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.

0.999…和乘法 · 乘法和数学 · 查看更多 »

序理论

序理论是研究捕获数学排序的直觉概念的各种二元关系的数学分支。.

0.999…和序理论 · 序理论和数学 · 查看更多 »

代数结构

在泛代数中代数结构是在一种或多种运算下封闭的一个或多个集合。 例如,群、环、域、和格的代数结构。更复杂的结构可以被定义为通过引入多个操作,不同的基础集,或通过改变限定公理。更复杂的代数结构的实例包括向量空间,模和代數 (環論)。关于代数结构的的详细情况,参见各个链接。 一个代数结构包含集合及符合某些公理的运算或关系。 集U上定义二元运算形成的系统称为代数系统,如果对于任意a,b∈U,恒有(a·b)∈U。二元运算可推广至多元运算F,则相应的封闭性要求则改为:对于任意a,b,c,d,……∈U,恒有F(a,b,c,d,……)∈U。有的书上对封闭性未作要求,并称之为广群。运算f是一个从A×B→C的映射,若A.

0.999…和代数结构 · 代数结构和数学 · 查看更多 »

分形

分形(Fractal),又稱--、殘形,通常被定義為「一個粗糙或零碎的幾何形狀,可以分成數個部分,且每一部分都(至少近似地)是整體縮小後的形狀」,即具有自相似的性質。 碎形思想的根源可以追溯到公元17世紀,而對碎形使用嚴格的數學處理則始於一個世紀後卡爾·魏爾施特拉斯、格奧爾格·康托爾和費利克斯·豪斯多夫對連續而不可微函數的研究。但是碎形(fractal)一詞直到1975年才由本華·曼德博創造出來,字源來自拉丁文 frāctus,有「零碎」、「破裂」之意。一個數學意義上碎形的生成是基於一個不斷迭代的方程式,即一種基於遞歸的反饋系統。碎形有幾種類型,可以分別依據表現出的精確自相似性、半自相似性和統計自相似性來定義。雖然碎形是一個數學構造,它們同樣可以在自然界中被找到,這使得它們被劃入藝術作品的範疇。碎形在醫學、土力學、地震学和技术分析中都有应用。.

0.999…和分形 · 分形和数学 · 查看更多 »

全序关系

全序关系即集合X上的反对称的、传递的和完全的二元关系(一般称其为\leq)。 若X满足全序关系,则下列陈述对于X中的所有a,b和c成立:.

0.999…和全序关系 · 全序关系和数学 · 查看更多 »

算术

算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.

0.999…和算术 · 数学和算术 · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

0.999…和素数 · 数学和素数 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

0.999…和群 · 数学和群 · 查看更多 »

證明

在數學上,證明是在一個特定的公理系統中,根据一定的规则或标准,由公理和定理推導出某些命題的過程。比起证据,数学证明一般依靠演绎推理,而不是依靠自然归纳和经验性的理据。這樣推導出來的命題也叫做該系統中的定理。 數學證明建立在逻辑之上,但通常會包含若干程度的自然語言,因此可能會產生一些含糊的部分。實際上,用文字形式寫成的數學證明,在大多數情況都可以視為非形式邏輯的應用。在證明論的範疇內,則考慮那些用純形式化的语言写出的證明。這個区别导致了对過往到現在的數學实践、和的大部分检验。數學哲學就關注語言和邏輯在數學證明中的角色,和作為語言的數學。.

0.999…和證明 · 数学和證明 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

0.999…和自然数 · 数学和自然数 · 查看更多 »

集合论

集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

0.999…和集合论 · 数学和集合论 · 查看更多 »

除法

数学中,尤其是在基本计算裏,除法可以看成是「乘法的反运算」,也可以理解为「重复的减法」。除法运算的本质就是「把参与运算的除数变为1,得出被除数的值」。 例如:6 \div 3.

0.999…和除法 · 数学和除法 · 查看更多 »

极限 (数学)

极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。 “函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。.

0.999…和极限 (数学) · 数学和极限 (数学) · 查看更多 »

減法

減法是尋找兩個數的差的算术運算,可視為「加法的逆運算」。減法是符號是減號(-)。加、減、乘、除合稱四則運算。 在數式5 - 3.

0.999…和減法 · 数学和減法 · 查看更多 »

数学分析

数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.

0.999…和数学分析 · 数学和数学分析 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

0.999…和数论 · 数学和数论 · 查看更多 »

数据压缩

在计算机科学和信息论中,数据压缩或者源编码是按照特定的编码机制用比未经编码少的数据位元(或者其它信息相关的单位)表示信息的过程。例如,如果我们将「compression」编码为「comp」那么这篇文章可以用较少的数据位表示。常見的例子是ZIP文件格式,此格式不仅仅提供压缩功能,还可作为归档工具(Archiver),能够将许多文件存储到同一个文件中。.

0.999…和数据压缩 · 数学和数据压缩 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

0.999…和整数 · 数学和整数 · 查看更多 »

上面的列表回答下列问题

0.999…和数学之间的比较

0.999…有118个关系,而数学有219个。由于它们的共同之处21,杰卡德指数为6.23% = 21 / (118 + 219)。

参考

本文介绍0.999…和数学之间的关系。要访问该信息提取每篇文章,请访问: