徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

EPR

指数 EPR

EPR可以指:.

11 关系: 压水反应堆乙丙橡胶哥本哈根磁共振爱因斯坦-波多尔斯基-罗森佯谬电子高渗透长滞留效应贅生物量子力学電子自旋共振欧洲压水反应堆

压水反应堆

压水反应堆(Pressurized Water Reactor,缩写为PWR)是美国开发成功的一种轻水核反应堆。所有的压水反应堆利用普通水作为冷却剂和中子慢化剂。 压水堆原本设计用作核潜艇的核能船舶用推进,并被用于在码头市核电站(Shippingport Atomic Power Station)第二个商业核电厂原始设计中。 目前在美国运行的压水反应堆被认为是第二代核反应堆。俄式壓水反應爐类似于美国压水反应堆。法国运行的许多压水反应堆生产法国的大部分电力。.

新!!: EPR和压水反应堆 · 查看更多 »

乙丙橡胶

乙丙橡胶,有机化合物制品,是橡胶制品工业中一项极为重要的原材料,有多种良好的理化特性。乙丙橡胶又可分为二元乙丙、三元乙丙橡胶、改性乙丙和热塑性乙丙。而三元乙丙橡胶(EPDM)已在汽车密封条行业中得到广泛的应用。 Category:有机高分子 Category:弹性体 Category:橡胶.

新!!: EPR和乙丙橡胶 · 查看更多 »

哥本哈根

哥本哈根(København,)是丹麥的首都、最大城市及最大港口。座落於丹麥西蘭島東部,與瑞典的馬爾默隔松德海峽相望。 松德海峽大橋在2000年完工後,哥本哈根與瑞典的馬爾默可透過車輛和鐵路往來,促成了兩地人力資源的互相交流,每年利用松德海峽大橋的通勤人數不斷增長。此外大橋通車後也讓兩座城市之間形成北歐地區最大的城市群。 在2008年,《Monocle》雜誌將哥本哈根選為「最適合居住的城市」,並給予「最佳設計城市」的評價。哥本哈根在全球城市分類中被列為第二類世界級城市。此外哥本哈根在西歐地區獲選為「設置企業總部的理想城市」第三名,僅次於巴黎和倫敦。 哥本哈根城市建立之際的名稱為「Kjøbmandehavn」,意為「商人的港口」。英語「Copenhagen」的名稱來自於低地德語「Kopenhagen」,中文譯名也由此而来。.

新!!: EPR和哥本哈根 · 查看更多 »

磁共振

磁共振是指具有磁矩的微观粒子体系在恒定外磁场中,磁矩相对于磁场方向只能取几种量子化的方位;若垂直于恒定磁场方向加一交变磁场,在适当条件下能改变磁矩的方位,使磁矩体系选择地吸收特定频率的交变磁场能量的现象。 是自旋磁共振現象;其意義上較廣,包含有:.

新!!: EPR和磁共振 · 查看更多 »

爱因斯坦-波多尔斯基-罗森佯谬

在量子力學裏,愛因斯坦-波多爾斯基-羅森弔詭(Einstein-Podolsky-Rosen paradox),簡稱「愛波羅弔詭」、「EPR弔詭」(EPR paradoxE、P、R這三個英文字母分別是愛因斯坦、波多爾斯基和羅森英文原文的第一個字母。)等,是阿爾伯特·愛因斯坦、鮑里斯·波多爾斯基和納森·羅森在1935年發表的一篇論文中,以弔詭的形式針對量子力學的哥本哈根詮釋而提出的早期重要批評。 在這篇題為《能認為量子力學對物理實在的描述是完全的嗎?》(,下稱「EPR論文」)的論文中,他們設計出一個思想實驗,稱為「EPR思想實驗」。藉著檢驗兩個量子糾纏粒子所呈現出的關聯性物理行為,EPR思想實驗凸顯出定域實在論與量子力學完備性之間的矛盾,因此,這論述被稱為「EPR弔詭」。 EPR論文並沒有質疑量子力學的正確性,它質疑的是量子力學的不完備性。EPR論文是建立於貌似合理的假設──定域論與實在論,合稱為定域實在論。定域論只允許在某區域發生的事件以不超過光速的傳遞方式影響其它區域。實在論主張,做實驗觀測到的現象是出自於某種物理實在,而這物理實在與觀測的動作無關。換句話說,定域論不允許鬼魅般的超距作用,實在論堅持,即使無人賞月,月亮依舊存在。將定域論與實在論合併在一起,定域實在論闡明,在某區域發生的事件不能立即影響在其它區域的物理實在,傳遞影響的速度必須被納入考量。在學術界裏,這些假設引起強烈的爭論,特別是在兩位諾貝爾物理學獎得主愛因斯坦與尼爾斯·玻爾之間。 EPR論文表明,假若定域實在論成立,則可以推導出量子力學的不完備性。在那時期,很多物理學者都支持定域實在論,但是,定域實在論這假設到底能否站得住腳還是一個待查的問題。1964年,物理學者約翰·貝爾提出貝爾定理表明,定域實在論與量子力學的預測不相符。專門檢驗貝爾定理所獲得的實驗結果,證實與量子力學的預測相符合,因此定域實在論不成立。Bell, John.

新!!: EPR和爱因斯坦-波多尔斯基-罗森佯谬 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: EPR和电子 · 查看更多 »

高渗透长滞留效应

渗透长滞留效应(enhanced permeability and retention effect,缩写EPR,或译为增强渗透滞留效应) 是指一些特定大小的大分子物质(如脂质体、纳米颗粒以及一些大分子药物)更容易渗透进入肿瘤组织并长期滞留(和正常组织相比)的现象,1986年由日本科學家前田浩与發現。对此常见的解释是,肿瘤细胞为了能够快速地生长,需要更多的养料和氧气,故会分泌血管内皮生长因子等与肿瘤血管生成有关的生长因子。特别是当肿瘤达到150-200微米大小时,会高度依赖于肿瘤血管的养料和氧气供应。此时新生成的肿瘤血管在结构与形态上与正常的血管有很大的不同。其內皮细胞间隙较大,缺少血管壁平滑肌层,血管紧张素受体功能缺失。另外,肿瘤组织也缺少淋巴管致使淋巴液回流受阻。这两者造成了大分子物质可以方便地穿过过血管壁在肿瘤组织中富集,且不被淋巴液回流带走而能长期存于肿瘤组织,故称为实体瘤的“高渗透长滞留效应”(EPR)。EPR效应可被一些病理生理因素进一步提高,如刺激肿瘤血管舒张的物质缓激肽、一氧化氮、过氧亚硝酸根离子、前列腺素、血管内皮生长因子、肿瘤坏死因子等。另外,肿瘤部位的淋巴细胞减少也会增加大分子物质在这里的滞留效应。 EPR效应对纳米颗粒和脂质体对肿瘤部位的给药相当重要, Maeda H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond.

新!!: EPR和高渗透长滞留效应 · 查看更多 »

贅生物

新生物、息肉或贅生物(neoplasm),是指身體細胞組織不正常的增生,當生長的數量龐大,便會成為腫瘤(tumour)。而腫瘤亦可以是良性或惡性的。 肿瘤(英語:tumor或tumour)在医学上是指细胞的异常病变,而不一定是身体上面的肿块。这一种病变,使身体部分细胞有不受控制的增生,許多時会集结成为肿块。肿瘤分为良性肿瘤、恶性肿瘤。 良性肿瘤生长速度缓慢,表面较光滑。并不侵入邻近的正常组织内。瘤体周围常形成包膜,因此与正常组织分界明显。除非长在要害部位,良性肿瘤一般不会致命,大多数可被完全切除,很少有复发。癌症即是最常见的恶性肿瘤。恶性肿瘤分为上皮源性的“癌”和间质源性的“肉瘤”。在恶性肿瘤中,这一些增生的细胞,除了会集结成为肿块,还会扩散至其他部位增生。 肿瘤细胞与正常细胞相比,有结构、功能和代谢的异常,它们具有超过正常的增生能力,这种增生和机体不相协调。非肿瘤性增生和肿瘤性增生不同,前者常有明显的刺激性因素,且增生限于一定的程度和时间,一旦此因素消除,即不再增生,但如超越一定的限度,发生质变,则也可变为肿瘤性增生。.

新!!: EPR和贅生物 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: EPR和量子力学 · 查看更多 »

電子自旋共振

電子順磁共振(electron paramagnetic resonance,EPR),又称電子自旋共振(electron spin resonance,ESR),是屬於自旋1/2粒子的電子在靜磁場下发生的磁共振現象。因为類似靜磁場下自旋1/2原子核核磁共振的現象,又因利用到電子的順磁性,故曾稱作“電子順磁共振”。 由於分子中的電子多數是成對存在,根據泡利不相容原理,每个電子对中的两个电子必為一個自旋向上,另一個自旋向下,所以磁性互相抵消。因此只有拥有不成對電子存在的粒子(例如過渡元素中重金屬原子或自由基),才能表現磁共振。 雖然电子自旋共振的原理与核磁共振的类似,但由於電子的質量遠輕於原子核的质量,所以电子有较大的磁矩。以氫原子核(質子)為例,電子磁矩強度是其659.59倍。因此對於電子,磁共振所在的拉莫頻率通常需要透過減弱主磁場強度來使之降低。但即使如此,拉莫頻率通常所在波段仍比核磁共振拉莫頻率所在的射頻範圍還要高(通常是在微波的波段),因此有穿透力以及對帶有水分子的樣品有加熱可能的潛在問題,在進行人體造影時則需要改變方法。舉例而言,0.3T的主磁場下,電子共振頻率發生在8.41GHz,而對於常用的核磁共振核種——質子而言,在這樣強度的磁場下,其共振頻率仅為12.77MHz。.

新!!: EPR和電子自旋共振 · 查看更多 »

欧洲压水反应堆

欧洲压水反应堆(EPR)是一种第三代压水反应堆(PWR)设计。它是被主要由在法国的"法玛通(Framatome)"(现在的阿海珐NP)和法国电力公司(EDF)和德国西门子公司设计和开发的。在欧洲,这种反应堆的设计被称为欧洲压水反应堆,以及国际化的名称是进化动力反应堆(Evolutionary Power Reactor),但是现在被阿海珐集团简单地命名为EPR。 四个EPR机组正在建设中。在芬兰的和法国的前两个机组,都面临着昂贵的工期延误(至少到2018年)。两个在中国的机组(广东省台山核电站)开工建设在2009年至2010年。中国机组曾准备开始运行在2014年和2015年,但是现在预计将在2018年和2019年进入联机。2016年9月,英国欣克利角的两个机组获得最终批准,预计将于2025年完成。 法国电力公司(EDF)承认在建设EPR设计方面的重大困难。2015年9月,法国电力公司表示,“新型号”的EPR的设计正在进行中,这将更容易的和更便宜的建造。.

新!!: EPR和欧洲压水反应堆 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »