徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

馬克士威應力張量

指数 馬克士威應力張量

在電磁學裏,馬克士威應力張量(Maxwell stress tensor)是描述電磁場帶有之應力的二階張量。馬克士威應力張量可以表現出電場力、磁場力和機械動量之間的相互作用。對於簡單的狀況,例如一個點電荷自由地移動於均勻磁場,應用勞侖茲力定律,就可以很容易地計算出點電荷所感受的作用力。但是,當遇到稍微複雜一點的狀況時,這很普通的程序會變得非常困難,方程式洋洋灑灑地一行又一行的延續。因此,物理學家通常會聚集很多項目於馬克士威應力張量內,然後使用張量數學來解析問題。.

35 关系: 动量动量守恒定律压强向量恆等式列表坡印廷向量安培定律对称关系張力張量內積剪應力国际单位制理想氣體磁場米 (单位)真空磁导率真空电容率电磁学电磁场牛頓第二運動定律牛顿馬克士威方程組高斯定律高斯磁定律高斯散度定理能量密度電場電磁場的數學表述電磁應力-能量張量電荷密度法拉第电磁感应定律洛伦兹力旋度應力

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 馬克士威應力張量和动量 · 查看更多 »

动量守恒定律

动量守恒定律(Conservation of momentum):如果物体系受到的合外力为零,则系统内各物体动量的矢量合保持不变,系統質心維持原本的運動狀態。.

新!!: 馬克士威應力張量和动量守恒定律 · 查看更多 »

压强

生在兩個物體接觸表面、垂直於該表面的作用力,亦可稱為壓力。通常來說,在液壓、氣動或大氣層等領域中提到的「壓力」指的實際上是壓强,即在数值上等於接觸表面上每單位面積所受壓力。 壓強是分布在特定作用面上之力與該面積的比值。換句話說,是作用在與物體表面垂直方向上的每單位面積的力的大小。計式壓強是相較於該地之大氣壓的壓強。雖然壓強可用任意之力單位與面積單位進行測量,但是壓強的國際標準單位(每單位平方公尺的牛頓)也被稱作帕斯卡。 一般以英文字母「p」表示。压力與力和--積的關係如下: 其中.

新!!: 馬克士威應力張量和压强 · 查看更多 »

向量恆等式列表

這條目陳列一些常用的向量代數的恆等式。.

新!!: 馬克士威應力張量和向量恆等式列表 · 查看更多 »

坡印廷向量

坡印廷向量(Poynting vector),亦称能流密度矢量,其方向為電磁能傳遞方向,大小為能流密度(单位面积的能量传输速率)。坡印廷矢量的SI单位是瓦特每平方米(W/m2)。它是以其发現者约翰·亨利·坡印廷來命名的。奧利弗·黑維塞 和尼科莱·乌诺夫亦獨立發現所謂的坡印廷向量。.

新!!: 馬克士威應力張量和坡印廷向量 · 查看更多 »

安培定律

安培定律(Ampère's circuital law),又稱安培環路定律,是由安德烈-瑪麗·安培於1826年提出的一條靜磁學基本定律。安培定律表明,載流導線所載有的電流,與磁場沿著環繞導線的閉合迴路的路徑積分,兩者之間的關係為 其中,\mathbb是環繞著導線的閉合迴路,\mathbf是磁場(又稱為B場),d\boldsymbol是微小線元素向量,\mu_0是磁常數,I_是閉合迴路\mathbb所圍住的電流。 1861年,詹姆斯·馬克士威又將這方程式重新推導一遍,使得符合電動力學條件,並且發表結果於論文《論物理力線》內。馬克士威認為,含時電場會生成磁場,假若電場含時間,則前述安培定律方程式不成立,必須加以修正。經過修正後,新的方程式稱為馬克士威-安培方程式,是馬克士威方程組中的一個方程式,以積分形式表示為 其中,\mathbb是邊緣為\mathbb的任意曲面,\mathbf是穿過曲面\mathbb的電流的電流密度,\mathbf是電位移,d\mathbf是微小面元素向量。.

新!!: 馬克士威應力張量和安培定律 · 查看更多 »

对称关系

数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.

新!!: 馬克士威應力張量和对称关系 · 查看更多 »

張力

張力(tension)乃是由一拉長、伸展的弦對施力者所做的反作用力。張力與弦的長度平行,方向朝弦 由於張力是力的一種,因此它的單位如同力,SI制是kg·m/s²。 張力也存在於弦的內部:若考慮把弦分成兩個部分,則張力便是這兩個部分互相對彼此作用(拉扯對方)的力。張力的大小決定弦是否斷裂,因此張力也是振动(參見vibrating string)的性質之一,而弦樂器則是靠調整弦的張力來調整其音高,並藉由震動弦發出聲響。 通常將弦繃緊,則張力也會增加。在拉長的長度夠小時,虎克定律可以描述這個力的大小。 在狹義相對論中的似弦物體(例如在一些模型中與夸克作用的弦)或現代弦論中的弦裡也討論張力。我們藉由這些弦的世界面(world sheet)分析這些弦,它們的能量通常與它們的長度成正比。在這些弦中的張力與它的伸長量無關。.

新!!: 馬克士威應力張量和張力 · 查看更多 »

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

新!!: 馬克士威應力張量和張量 · 查看更多 »

內積

#重定向 点积.

新!!: 馬克士威應力張量和內積 · 查看更多 »

剪應力

剪應力是應力的一種,定義為單位面積上所承受的力,且力的方向與受力面的法线方向正交。公式記為 \tau_.

新!!: 馬克士威應力張量和剪應力 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 馬克士威應力張量和国际单位制 · 查看更多 »

理想氣體

想氣體為假想的气体。其假設為:.

新!!: 馬克士威應力張量和理想氣體 · 查看更多 »

磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.

新!!: 馬克士威應力張量和磁 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 馬克士威應力張量和磁場 · 查看更多 »

米 (单位)

-- --( → metre,),中國大陸和香港音譯為「--」(亦稱「公--尺」),台灣作「--」(口語偶稱「--」),舊譯「邁當」、「--達」。它是国际单位制基本长度单位,符号为m。1米的长度最初定义为通过巴黎的經線上从地球赤道到北极点的距离的千万分之一。其后随着人们对度量衡学的认识加深,米的长度的定义几经修改。从1983年至今,米的长度已经被定义为“光在真空中于1/299792458秒内行进的距离”。.

新!!: 馬克士威應力張量和米 (单位) · 查看更多 »

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

新!!: 馬克士威應力張量和真空磁导率 · 查看更多 »

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

新!!: 馬克士威應力張量和真空电容率 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

新!!: 馬克士威應力張量和电磁学 · 查看更多 »

电磁场

電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.

新!!: 馬克士威應力張量和电磁场 · 查看更多 »

牛頓第二運動定律

牛頓第二運動定律(Newton's second law of motion)闡明,物體的加速度與所受的凈力成正比,與質量成反比,物體的加速度與凈力同方向。 牛頓第二定律亦可以表述為「物体的动量对时间的变化率和所受外力成正比」。即动量对时间的一阶导数等于外力。.

新!!: 馬克士威應力張量和牛頓第二運動定律 · 查看更多 »

牛顿

牛顿(Newton)是一个欧洲人的姓氏,字源于地名。地名在古英语裡的意思是“新镇”。牛顿或Newton可以指:.

新!!: 馬克士威應力張量和牛顿 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 馬克士威應力張量和馬克士威方程組 · 查看更多 »

高斯定律

斯定律(Gauss' law)表明在闭合曲面内的电荷分佈與產生的電場之間的關係:.

新!!: 馬克士威應力張量和高斯定律 · 查看更多 »

高斯磁定律

在電磁學裏,高斯磁定律闡明,磁場的散度等於零。因此,磁場是一個螺線向量場。從這事實,可以推斷磁單極子不存在。磁的基本實體是磁偶極子,而不是磁荷。當然,假若將來科學家發現有磁單極子存在,那麼,這定律就必須做適當的修改,如稍後論述。高斯磁定律是因德國物理學者卡爾·高斯而命名。 在物理學界,很多學者使用「高斯磁定律」來指稱這定律,但並不是每一位學者都採用這名字。有些作者稱它為「自由磁單極子缺失」,或明確地表示這定律沒有取名字。還有些作者稱此定律為「橫向性要求」,因為在真空中或線性介質中傳播的電磁波必須是橫波。.

新!!: 馬克士威應力張量和高斯磁定律 · 查看更多 »

高斯散度定理

斯公式,又称为散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。 更加精确地说,高斯公式说明向量场穿过曲面的通量,等于散度在曲面圍起來的體積上的积分。直观地,所有源点的和减去所有汇点的和,就是流出這区域的淨流量。 高斯公式在工程数学中是一个很重要的结果,特别是静电学和流体力学。 在物理和工程中,散度定理通常运用在三维空间中。然而,它可以推广到任意维数。在一维,它等价于微积分基本定理;在二维,它等价于格林公式。 这个定理是更一般的斯托克斯公式的特殊情形。.

新!!: 馬克士威應力張量和高斯散度定理 · 查看更多 »

能量密度

能量密度是指在一定的空间或质量物质中储存能量的大小。如果是按质量来判定一般被称为比能。.

新!!: 馬克士威應力張量和能量密度 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 馬克士威應力張量和電場 · 查看更多 »

電磁場的數學表述

在電磁學裏,有幾種電磁場的數學表述,這篇文章會講述其中三種表述。.

新!!: 馬克士威應力張量和電磁場的數學表述 · 查看更多 »

電磁應力-能量張量

物理學中,電磁應力-能量張量是指由電磁場貢獻於應力-能量張量(又稱能量-動量張量)的部份。在自由空間中,以國際單位制之單位可表示成: 若以明顯的矩陣形式,可寫為: S_x & -\sigma_ & -\sigma_ & -\sigma_ \\ S_y & -\sigma_ & -\sigma_ & -\sigma_ \\ S_z & -\sigma_ & -\sigma_ & -\sigma_ \end, 其中 B_i B_j - \frac \left(\right)\delta _. 注意到c^2.

新!!: 馬克士威應力張量和電磁應力-能量張量 · 查看更多 »

電荷密度

在電磁學裏,電荷密度是一種度量,描述電荷分佈的密度。電荷密度又可以分類為線電荷密度、面電荷密度、體電荷密度。 假設電荷分佈於一條曲線或一根直棒子,則其線電荷密度是每單位長度的電荷密度,單位為庫侖/公尺 (coulomb/meter) 。假設電荷分佈於一個平面或一個物體的表面,則其面電荷密度是每單位面積的電荷密度,單位為庫侖/公尺2。假設電荷分佈於一個三維空間的某區域或物體內部,則其體電荷密度是每單位體積的電荷密度,單位為庫侖/公尺3。 由於在大自然裏,有兩種電荷,正電荷和負電荷,所以,電荷密度可能會是負值。電荷密度也可能會跟位置有關。特別注意,不要將電荷密度與電荷載子密度 (charge carrier density) 搞混了。 電荷密度與電荷載子的體積有關。例如,由於鋰陽離子的半徑比較小,它的體電荷密度大於鈉陽離子的體電荷密度。.

新!!: 馬克士威應力張量和電荷密度 · 查看更多 »

法拉第电磁感应定律

法拉第電磁感應定律(Faraday's law of electromagnetic induction)是電磁學中的一條基本定律,跟變壓器、電感元件及多種發電機的運作有密切關係。定律指出: 此定律於1831年由迈克尔·法拉第發現,約瑟·亨利則是在1830年的獨立研究中比法拉第早發現這一定律,但其並未發表此發現。故這個定律被命名為法拉第定律。 本定律可用以下的公式表达: 其中: 電動勢的方向(公式中的負號)由楞次定律提供。“通過電路的磁通量”的意義會由下面的例子闡述。 傳統上有兩種改變通過電路的磁通量的方式。至於感應電動勢時,改變的是自身的電場,例如改變生成場的電流(就像變壓器那樣)。而至於動生電動勢時,改變的是磁場中的整個或部份電路的運動,例如像在同極發電機中那樣。.

新!!: 馬克士威應力張量和法拉第电磁感应定律 · 查看更多 »

洛伦兹力

在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.

新!!: 馬克士威應力張量和洛伦兹力 · 查看更多 »

旋度

旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.

新!!: 馬克士威應力張量和旋度 · 查看更多 »

應力

在連續介質力學裏,應力定義為單位面積所承受的作用力。以公式標記為 其中,\sigma \,表示應力;\Delta F_j\,表示在j\,方向的施力;\Delta A_i \,表示在i\,方向的受力面積。 假設受力表面與施力方向正交,則稱此應力分量為正向應力(normal stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,,都是正向應力;假設受力表面與施力方向互相平行,則稱此應力分量為剪應力(shear stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,,都是剪應力。 「內應力」指組成單一構造的不同材質之間,因材質差異而導致變形方式的不同,繼而產生的各種應力。 採用國際單位制,应力的单位是帕斯卡(Pa),等於1牛頓/平方公尺。應力的單位與壓強的單位相同。兩種物理量都是單位面積的作用力的度量。通常,在工程學裏,使用的單位是megapascals(MPa)或gigapascals(GPa)。採用英制單位,應力的單位是磅力/平方英寸(psi)或千磅力/平方英寸(ksi)。.

新!!: 馬克士威應力張量和應力 · 查看更多 »

重定向到这里:

馬克士威爾應力張量馬克斯威應力張量马克士威尔应力张量麦克斯韦应力张量麦克斯韦胁强张量電磁場應力張量

传出传入
嘿!我们在Facebook上吧! »