徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

長岡半太郎

指数 長岡半太郎

長岡半太郎(日語: ながおか はんたろう;英語: Hantaro Nagaoka, ),日本長崎縣人,是一位理論物理學家,為明治時代早期的物理學先驅,以提出土星原子模型而聞名於世。.

39 关系: 大阪大学大村市大村藩尼尔斯·玻尔尼康东京仁科芳雄介子勳一等旭日大綬章玻尔模型玛丽·居里理化学研究所理论物理学约瑟夫·汤姆孙电子电感物理学物理学家螺線管青空文庫路德维希·玻尔兹曼肥前國长崎县東京大轟炸東京都梅子布丁模型欧内斯特·卢瑟福正三位汤川秀树朝日新闻社明治斯克里布纳之子公司日本日本学士院日本文化勳章日本文化勋章放射性拉塞福模型

大阪大学

大阪大学(;英語譯名:Osaka University),簡稱阪大(はんだい;Handai),是一所本部位於日本大阪府的国立研究型综合大学。阪大前身是舊制帝国大学-大阪帝國大學(1931年)。理科起源於明治時代最大的兰学塾「適塾」(1838年);文科起源於西日本最大的漢學塾「怀德堂」(1724年)。 阪大學術排名日本第4、世界第96。最新QS 2018世界大學排名第63,在讀大學生规模为日本之首。校友涵蓋日本第一個諾貝爾獎、沃爾夫獎、拉斯克奖、克拉福德奖得主,亦獲得若干蓋爾德納國際獎、日本國際獎、與查尔斯·斯塔克·德雷珀奖。.

新!!: 長岡半太郎和大阪大学 · 查看更多 »

大村市

大村市()為位于日本長崎縣中央部的城市;東部為多良岳縣立公園,西側面向大村灣。 長崎機場也位於此。 由於位於長崎縣的中央,交通便利,現逐漸發展為長崎市與佐世保市的通勤城市。.

新!!: 長岡半太郎和大村市 · 查看更多 »

大村藩

大村藩()是日本江戶時代的一個藩。位於肥前國彼杵,藩廳是玖島城(現在的長崎縣大村市),家格屬於外樣大名,於江戶城詰席時份在柳之間,石高2萬7千石。.

新!!: 長岡半太郎和大村藩 · 查看更多 »

尼尔斯·玻尔

尼尔斯·亨里克·达维德·玻尔(Niels Henrik David Bohr,),丹麦物理学家,1922年因“他對原子結構以及從原子發射出的輻射的研究”而榮获诺贝尔物理学奖。 玻尔發展出原子的玻尔模型。这一模型利用量子化的概念來合理地解释了氢原子的光谱。他还提出量子力学中的互补原理。20世纪20年代至30年代间量子力学及相关课题研究者的活动中心,哥本哈根大学的理论物理研究所(现名尼尔斯·玻尔研究所),也是由玻尔在1921年创办的。 20世纪30年代,玻尔积极帮助来自纳粹德国的流亡者。在纳粹德国占领丹麥后,玻尔与主持德国核武器开发计划的海森堡进行了一次著名会談。他在得知可能被德国人逮捕后,经由瑞典流亡至英国,並於該國参与了合金管工程。這是英国在曼哈顿计划中承擔的任務。战后,他呼吁各国就和平利用核能进行合作。他参与了欧洲核子研究组织及的创建,并于1957年成为的首任主席。为纪念玻尔,国际纯粹与应用化学联合会决定以他的名字命名107号元素,𨨏。.

新!!: 長岡半太郎和尼尔斯·玻尔 · 查看更多 »

尼康

尼康株式會社(英文:Nikon,株式会社ニコン)簡稱尼康(英文:Nikon),是一家日本大型光學儀器製造商,也是三菱集团的關係企业之一。「Nikon」此企業名稱,為原始之商號「日本光學工業」(NIPPON KOGAKU K.K.)各取前段日文發音的略縮語。 尼康一直致力于光学和影像产品的研究开发,其产品包括照相机、相机镜头、集成电路制造设备、液晶制造设备、望远镜、显微镜、投影機、眼鏡和测量仪器。到2013年3月为止,公司共有24,047名雇员。公司总部位于日本东京千代田区丸之内,而照相机相关业务与服务中心位于日本东京品川区西大井。.

新!!: 長岡半太郎和尼康 · 查看更多 »

东京

東京()是位於日本關東地方的都市,狹義上指東京都、或東京都區部(即東京市區),亦可泛指東京都及周邊衛星都市群相連而成的「首都圈」(東京都會區)。目前(2017年8月)東京都區部人口數達946萬,首都圈的人口數則達3千6百萬,是目前全球規模最大的都會區,亦為亞洲最重要的世界級城市。東京是传统上的全球四大世界級城市之一,在2016年GDP達9472.7億美元,超越紐約(9006.8億)成為全球第一,同時全球城市指數排名中排名第三。 東京古稱江戶,自德川幕府時代以來開始成為日本主要都市之一,明治維新時期改為現名後,更發展為日本政治、經濟、文化、交通等眾多領域的樞紐中心。經過二戰後的繼續發展,東京不僅成為世界商業金融、流行文化與時尚重鎮,亦為世界經濟發展度與富裕程度最高的都市之一。此外,東京還有目前全球最複雜、最密集的城市軌道交通系統,其中東京的地鐵系統每日平均運量達880萬人次,繁忙程度居全球地鐵第三位。 在正式的行政區劃定義上,東京僅限於東京都,與道、府、縣同為日本的一級行政區,轄區包含東京都區部、多摩地方與伊豆群島、小笠原群島等離島;其中,東京都區部為日本中央政府所在地。東京都同時也囊括了日本最南端(沖之鳥礁)和最東端(南鳥島)等地理極點,擁有日本各都道府縣中最多的人口數,同時也是日本人口密度最高的都道府縣。.

新!!: 長岡半太郎和东京 · 查看更多 »

仁科芳雄

仁科芳雄()是一位日本物理學家,也是日本近代物理的奠基人,被稱為日本物理之父。他曾是理化學研究所的研究人員,指導過許多著名日本物理學家,包括諾貝爾物理學獎得主湯川秀樹與朝永振一郎。 他在第二次世界大戰期間領導日本核研究計畫。奧斯卡·克萊因(Oskar Klein)與他提出克萊茵-仁科方程式。仁科芳雄曾在宇宙線中偵測到μ子,獨立於卡爾·安德森的研究。他也發現鈾237同位素,也是鈾分裂的研究先驅。.

新!!: 長岡半太郎和仁科芳雄 · 查看更多 »

介子

介子是自旋为整数、重子数为零的强子,参与强相互作用。介子属于强子类。它是比电子重的带电或不带电的粒子。 根据夸克模型,介子是由一个夸克和一个反夸克组成的束缚态,这一对夸克和反夸克可以是不同味的,例如π+=(ud¯),π-=(ūd),J/ψ=(cc),F=(cs)等。 自旋为0的介子,在量子场论中是用标量波函数描述,根据其宇称为-1或+1分别称为赝标介子和标量介子。自旋为1的介子,在量子场论中是用矢量波函数描述,根据其宇称为-1或+1分别称为矢量介子或轴矢介子。根据其内部量子数,已发现的介子可分为非奇异介子(π、ρ、J/ψ等)、奇异介子(K、Q、K*等)、粲-非奇异介子(D)、粲-奇异介子(F)、底-非奇异介子(B)等。.

新!!: 長岡半太郎和介子 · 查看更多 »

勳一等旭日大綬章

勳一等旭日大綬章為日本國之勳章。依據1875年(明治8年)4月10日勳章制定文件(明治8年太政官布告第54號)為基礎而制定。大綬從右肩到左脇披垂,副章(勳二等旭日重光章之正章相同)佩帶在左胸。2003年(平成15年)11月3日改為旭日大綬章。 受章者合計有1220名(戰前810名、戰後410名)。.

新!!: 長岡半太郎和勳一等旭日大綬章 · 查看更多 »

玻尔模型

玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,合理地解释了氢原子光谱和元素周期表,取得了巨大的成功。玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。.

新!!: 長岡半太郎和玻尔模型 · 查看更多 »

玛丽·居里

玛丽亚·斯克沃多夫斯卡-居里(Maria Skłodowska-Curie,),通常稱為玛丽·居里(Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化学家。她是放射性研究的先驱者,是首位获得诺贝尔奖的女性,获得两次诺贝尔奖(獲得物理学奖及化学奖)的第一人(另一位為鲍林,獲得化學奖及和平奖)及唯一的女性,是唯一獲得二種不同科學類诺贝尔奖的人。她是巴黎大学第一位女教授。1995年,她与丈夫皮埃尔·居里一起移葬先贤祠,成为第一位凭自身成就入葬先贤祠的女性。 玛丽·居里原名玛丽亚·斯克沃多夫斯卡(Maria Salomea Skłodowska),生于当时俄罗斯帝国统治下的波兰会议王国的华沙,即现在波兰的首都。她在华沙地下读书,并开始接受真正的科学训练。她在华沙生活至24岁,1891年追随姊姊布洛尼斯拉娃至巴黎读书。她在巴黎取得学位并在毕业后留在巴黎从事科学研究。1903年她和丈夫皮埃尔·居里及亨利·贝可勒尔共同獲得了诺贝尔物理学奖,1911年又因放射化学方面的成就获得诺贝尔化学奖。 玛丽·居里的成就包括开创了放射性理论,放射性的英文Radioactivity是她造的词,她发明了分离放射性同位素的技术,以及发现两种新元素釙(Po)和镭(Ra)。在她的指导下,人们第一次将放射性同位素用于治疗肿瘤。她在巴黎和华沙各创办了一座居里研究所,这两个研究所至今仍是重要的医学研究中心。在第一次世界大战期间,她创办了第一批战地放射中心。 雖然玛丽·居里是法國公民,人身在異國,但也从未忘记她的祖国波兰。她教女兒波蘭文,多次帶她們去波蘭。她以祖国波兰的名字命名她所发现的第一种元素釙。 第一次世界大战時期,瑪麗·居里利用她本人发明的流動式X光機協助外科醫生。1934年病逝於法國上薩瓦省療養院,享年66岁。.

新!!: 長岡半太郎和玛丽·居里 · 查看更多 »

理化学研究所

國立研究開發法人理化学研究所(Institute of Physical and Chemical Research ,日語:理化学研究所),簡稱理研或RIKEN。是日本資本主義之父澀澤榮一於1917年设立,涵蓋物理学、化学、工学、生物学、医科学等領域,由基礎研究至應用研究均有執行的大型自然科学研究机构。 理化学研究所的本部位於埼玉縣和光市,在茨城縣筑波市、兵庫縣佐用郡、神奈川縣横濱市、兵庫縣神戶市、宮城縣仙台市、愛知縣名古屋市及東京都板橋區設有分所。 預算965億日圓,人数3560名(2017年4月1日)。.

新!!: 長岡半太郎和理化学研究所 · 查看更多 »

理论物理学

论物理学(Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。 豐富的想像力、精湛的數學造詣、嚴謹的治學態度,這些都是成為理論物理學家需要培養的優良素質。例如,在十九世紀中期,物理大師詹姆斯·麥克斯韋覺得電磁學的理論雜亂無章、急需整合。尤其是其中許多理論都涉及超距作用(action at a distance)的概念。麥克斯韋對於這概念極為反對,他主張用場論來解釋。例如,磁鐵會在四周產生磁場,而磁場會施加磁場力於鐵粉,使得這些鐵粉依著磁場力的方向排列,形成一條條的磁場線;磁鐵並不是直接施加力量於鐵粉,而是經過磁場施加力量於鐵粉;麥克斯韋嘗試朝著這方向開闢一條思路。他想出的「分子渦流模型」,借用流體力學的一些數學框架,能夠解釋所有那時已知的電磁現象。更進一步,這模型還展示出一個嶄新的概念——電位移。由於這概念,他推理電磁場能夠以波動形式傳播於空間,他又計算出其波速恰巧等於光速。麥克斯韋斷定光波就是一種電磁波。從此,電學、磁學、光學被整合為一統的電磁學。.

新!!: 長岡半太郎和理论物理学 · 查看更多 »

磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.

新!!: 長岡半太郎和磁 · 查看更多 »

约瑟夫·汤姆孙

约瑟夫·汤姆孙爵士,OM,FRS(Sir Joseph John Thomson,,簡稱J.J.Thomson),英国物理学家,电子的发现者。.

新!!: 長岡半太郎和约瑟夫·汤姆孙 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 長岡半太郎和电子 · 查看更多 »

电感

電感(Inductance)是閉合迴路的一種屬性,即當通過閉合迴路的電流改變時,會出現電動勢來抵抗電流的改變。如果這種現象出現在自身迴路中,那麼這種電感稱為自感(self-inductance),是閉合迴路自己本身的屬性。假設一個閉合迴路的電流改變,由於感應作用在另外一個閉合迴路中產生電動勢,這種電感稱為互感(mutual inductance)。電感以方程式表達為 其中,\mathcal是電動勢,L是電感,i是電流,t是時間。 術語「電感」是1886年由奥利弗·赫维赛德命名。通常自感是以字母「L」標記,這可能是為了紀念物理學家海因里希·楞次的貢獻。互感是以字母「M」標記,是其英文(Mutual Inductance)的第一個字母。採用國際單位制,電感的單位是亨利(henry),標記為「H」,是因美國科學家約瑟·亨利命名。1 H.

新!!: 長岡半太郎和电感 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 長岡半太郎和物理学 · 查看更多 »

物理学家

物理學家是指受物理學訓練、並以探索物質世界的組成和運行規律(即物理學)為目的科學家。研究範疇可細至構成一般物質的微細粒子,大至宇宙的整體,不同的範圍都會有相對的專家。對應於物理學分為理論物理學和實驗物理學,物理学家也可以分為理論物理學家和實驗物理學家。物理學中理論和實驗都是必不可缺的组成部分,所以有时候這樣的分類很難界定,只不過在一個物理學家更偏重理論的情况下,被稱為理論物理學家的例子包括爱因斯坦、海森堡、狄拉克、埃爾溫·薛丁格、尼爾斯·波耳、楊振寧等;而若偏重實驗,則稱為實驗物理學家,例如艾薩克·牛頓、法拉第、亨利·貝克勒、尼古拉·特斯拉、馬克斯·馮·勞厄、約瑟夫·湯姆森、歐內斯特·勞倫斯、吳健雄、威廉·肖克利、朱棣文等。.

新!!: 長岡半太郎和物理学家 · 查看更多 »

螺線管

螺線管(英文:solenoid)是個三維線圈。在物理學裏,術語螺線管指的是多重捲繞的導線,捲繞內部可以是空心的,或者有一個金屬芯。當有電流通過導線時,螺線管內部會產生均勻磁場。螺線管是很重要的元件.。很多物理實驗的正確操作需要有均勻磁場。螺線管也可以用為電磁鐵或電感器。 在工程學裏,螺線管也指為一些轉換器(transducer),將能量轉換為直線運動。电磁阀(solenoid valve)是一種綜合原件,內中最重要的組件是機電螺線管。機電螺線管是一種機電原件,可以用來操作氣控閥或液壓閥。螺線管開關是一種繼電器,使用機電螺線管來操作電開關。例如,汽車的起動器螺線管是一種機電螺線管。.

新!!: 長岡半太郎和螺線管 · 查看更多 »

青空文庫

青空文庫()是蒐集了日本國內著作權已經進入公有領域的文學作品的數位圖書館,由富田倫生、野口英司、八卷美惠、らんむろ・さてぃ四人發起創立,被每日新聞譽为将日本国内公有领域文学作品数字化的先驅。2015年访问量累计达880萬次以上。 收錄作品由志願者在JIS X 0208漢字編碼規格內以青空文庫格式文本檔案用Html格式電子化。為了讓人能夠在遵守《青空文库收录文件的使用规定》下自由利用,收錄作品在個人電腦、PAD、手機上也能够使用。 雖然青空文庫沒有提供閱讀軟體,但電子辭典、iPhone都已經有開發出閱讀文庫用的第三方應用程式。.

新!!: 長岡半太郎和青空文庫 · 查看更多 »

路德维希·玻尔兹曼

路德维希·爱德华·玻尔兹曼(Ludwig Eduard Boltzmann ,)是一位奥地利物理学家和哲学家。作为一名物理学家,他最伟大的功绩是发展了通过原子的性质(例如,原子量,电荷量,结构等等)来解释和预测物质的物理性质(例如,粘性,热传导,扩散等等)的统计力学,并且从统计概念出發,完美地阐释了热力学第二定律。.

新!!: 長岡半太郎和路德维希·玻尔兹曼 · 查看更多 »

肥前國

肥前國(),日本古代的令制國之一,屬西海道,又稱肥州。肥前國的領域大約包含現在的佐賀縣及扣除壹岐島和對馬島後的長崎縣。.

新!!: 長岡半太郎和肥前國 · 查看更多 »

长崎县

长崎县()是日本九州地方西北部的县,縣廳所在地是長崎市。長崎縣的管轄範圍包括九州本島的部分和九州西北部海域的对马岛、壹岐岛和五島列島等離島。「長崎」這一地名來自於「長岬」之意(「崎」和「岬」在日語中發音相同)和古代在這裡居住的。長崎縣唯一的陸上鄰縣是佐賀縣,在令制國時代兩縣都屬於肥前國。長崎縣的海岸線地形極為複雜。雖然長崎縣的面積只排名日本第37位,但是海岸線長度卻達4,195公里,佔日本海岸線總長度的12%,高居日本所有一級行政區首位。在日本鎖國時期,長崎是日本唯一獲得幕府承認的與西洋進行貿易的窗口,因此長崎縣的天主教信徒比例較高,天主教會在長崎單獨設有天主教長崎總教區。靠近朝鮮半島和中國大陸的地理位置使得長崎也受到東亞大陸文化的影響較強。長崎新地中華街是日本三大中華街之一。對馬則是江戶時代時獲得幕府承認的和李氏朝鮮進行貿易的據點。長崎縣地形多山,人口多集中在沿海的狹小平地,加上多離島這一特點,使得海運和空運在長崎縣交通中有重要地位。長崎縣的佐世保市在二戰之前是日本海軍四大鎮守府之一的佐世保鎮守府所在地,現在也是重要的軍港。.

新!!: 長岡半太郎和长崎县 · 查看更多 »

東京大轟炸

东京大轰炸(東京大空襲,)是第二次世界大戰期间美國陸軍航空軍对日本首都东京的一系列大规模戰略轟炸。 自1944年11月14日起,东京总共经历过106次空袭,包括5次大规模空袭(1945年3月10日、4月13日、4月15日、5月24日、5月25-26日),其中1945年3月10日的空袭(下町空袭)造成了10万人以上死亡以及100万人受灾,5月25日的空袭造成约7000人死亡。大多数情况下,东京大轰炸主要指1945年3月10日、5月25日這兩次轟炸。.

新!!: 長岡半太郎和東京大轟炸 · 查看更多 »

東京都

東京都()是位於日本關東地方的地方行政區,與道、府、縣同屬日本第一級行政區劃(),為事實上的日本首都。轄區包含東京都區部、多摩地方、伊豆群島、小笠原群島等地區,同時也囊括了日本最南端(冲之鸟礁)和最東端(南鳥島)等幾個地理極點。面積約2,188平方公里,人口1,374萬,人口總數居於日本各都道府縣首位。全境劃分為23區、26市、5町、8村,其中都廳所在地為新宿區。 截至2017年止,東京都是GDP產值世界第1的都市,超過世界第二名的紐約。東京都2010年的人均總生産額達到6,955,171日元(依當年國際匯率兑换成79,261美元),位列全世界第一。以東京都為核心的日本首都圈(東京都會區),聚集人口逾3千6百萬,為世界第一大都會區。.

新!!: 長岡半太郎和東京都 · 查看更多 »

梅子布丁模型

梅子布丁模型(Plum pudding model,又称枣糕模型、葡萄干布丁模型、西瓜模型、湯姆森模型等)是1904年約瑟夫·湯姆森提出的原子结构模型。.

新!!: 長岡半太郎和梅子布丁模型 · 查看更多 »

欧内斯特·卢瑟福

欧内斯特·卢瑟福,第一代尼爾森的卢瑟福男爵,OM,FRS(Ernest Rutherford, 1st Baron Rutherford of Nelson,),新西兰物理学家,世界知名的原子核物理學之父。學術界公認他為繼法拉第之後最偉大的實驗物理學家。 卢瑟福首先提出放射性半衰期的概念,證實放射性涉及從一個元素到另一個元素的--。他又將放射性物質按照貫穿能力分類為α射線與β射線,並且證實前者就是氦離子。因為「对元素蜕变以及放射化学的研究」,他榮獲1908年諾貝爾化學獎。 卢瑟福領導團隊成功地證實在原子的中心有個原子核,創建了卢瑟福模型(行星模型)。他最先成功地在氮與α粒子的核反應裏將原子分裂,他又在同實驗裏發現了質子,並且為質子命名。第104号元素为纪念他而命名为“鑪”。.

新!!: 長岡半太郎和欧内斯特·卢瑟福 · 查看更多 »

正三位

正三位為日本品秩與神階的一種,位於從二位之下從三位之上。.

新!!: 長岡半太郎和正三位 · 查看更多 »

汤川秀树

湯川秀樹(,),FRS,日本理论物理学家,理學博士。歷任京都大學、大阪大學名譽教授。京都市榮譽市民。勳一等旭日大綬章、文化勳章表彰,贈從二位。 湯川研究位在原子核內部使質子與中子結合的強交互作用,並在1935年發表推測其之間應有介子的存在。1947年,英國物理學家塞西爾·鮑威爾從宇宙線中發現π介子,同時也證明了湯川的理論。因此,湯川在1949年成為首位日本人諾貝爾獎得主。.

新!!: 長岡半太郎和汤川秀树 · 查看更多 »

朝日新闻社

朝日新聞社()是一家日本報社,主要發行《朝日新聞》,也出版雜誌、書籍,舉辦藝術作品的展覽、公演、運動會等活動。創立於1879年(明治12年1月25日),在日本共有5個本社與支社,284個報道室。在日本以外有31個報道室。共有21個印刷廠,是日本最大的新聞社。在日本擁有極強的影響力。其報紙銷售店的名稱為「ASA」(Asahi Shimbun Service Anchor)。 該社與朝日生命保險、朝日啤酒、朝日飲料等企業沒有任何關連。.

新!!: 長岡半太郎和朝日新闻社 · 查看更多 »

明治

明治是日本明治天皇在位期間使用的年號,時間為1868年10月23日(旧历9月8日)至1912年7月30日。.

新!!: 長岡半太郎和明治 · 查看更多 »

斯克里布纳之子公司

斯克里布纳之子公司是一家出版機構,1846年創立于紐約Park Row的the Brick Church Chapel,是克里布纳公司的子公司。公司多年出版斯克里布纳雜誌。該公司因出版海明威的書籍而聞名。該公司的書店的所有權由Barnes & Noble公司掌握。.

新!!: 長岡半太郎和斯克里布纳之子公司 · 查看更多 »

日本

日本國(),是位於東亞的島嶼國家,由日本列島、琉球群島和伊豆-小笠原群島等6,852個島嶼組成,面積約37.8万平方公里。國土全境被太平洋及其緣海環抱,西鄰朝鮮半島及俄罗斯,北面堪察加半島,西南為臺灣及中國東部。人口達1.26億,居於世界各國第11位,當中逾3,500萬以上的人口居住於東京都與周邊數縣構成的首都圈,為世界最大的都市圈。政體施行議會制君主立憲制,君主天皇為日本國家與國民的象徵,實際的政治權力則由國會(參眾兩院)、以及內閣總理大臣(首相)所領導的內閣掌理,最高法院為最高裁判所。 傳說日本於公元前660年2月11日,由天照大神之孫下凡所生之後代磐余彥尊所建,在公元4世紀出現首個統一政權,並於大化改新中確立了天皇的中央集权體制。至平安時代結束前,日本透過文字、宗教、藝術、政治制度等從漢文化引進的事物,開始衍生出今日為人所知的文化基礎。12世紀後的六百年間,日本由武家階級建立的幕府實際掌權。17世纪起江户幕府頒布锁国令,至1854年被迫開港才結束。此後,日本在西方列強進逼的時局下,首先天皇從幕府手中收回統治權,接著在19世紀中期的明治维新進行大規模政治與經濟改革,實現工業化及現代化;而自19世纪末起,日本首先兼併琉球,再拿下台灣、朝鮮、樺太等地為屬地。進入20世紀時,日本已成為當時世界的帝國主義強權之一,也是當時東方世界唯一的大國。日本後來成為第二次世界大戰的軸心國之一,對中國與南洋發動全面侵略,但最终於1945年戰敗投降。日本投降至1952年《旧金山和约》生效前,同盟国军事占领日本,並監督日本制定新憲法、建立今日所見的政治架構,日本轉型為以國會為中心的民主政體,天皇地位虛位化,並依照憲法第九條放棄維持武装以及宣戰權。而日本雖在法律上實施非武裝化,出於自我防衛上的需要,仍擁有功能等同於其他國家軍隊的自衛隊。 日本是世界第三大經濟體,亦為七大工業國組織成員,是世界先進國家之一,主要奠基於日本經濟在二戰後的巨幅增長。現時日本的科研能力、工業基礎和製造業技術均位居世界前茅,並是世界第四大出口國和進口國。2015年,日本的人均國內生產總值依國際匯率可兌換成為三萬二千,人均國民收入則在三萬七千美元左右,人類發展指數亦一直維持在極高水平。.

新!!: 長岡半太郎和日本 · 查看更多 »

日本学士院

日本学士院(日本学士院,The Japan Academy)是日本文部科学省所属的特别机关。该院是根据以优待学术上取得功绩显著的学者,促进学术的发达为目的《日本学士院法》第1条而设立的。对于日本的学者来说,成为日本学士院的会员是仅次于获得文化勋章或者文化功劳者的荣誉。日本学士院設址于東京都台東区上野恩赐公园内。 学士院会员可以获得低于文化功劳者的薪水(上述法律第9条),这属于非常勤国家公务员的待遇。会员的评选是根据各部分科会员的投票所进行的。会员为终身制(3条2项),名额为150名(2条2项)。 学士院既是荣誉机构又是研究机构。外国的科学院经常进行科学研究,与此相比,日本学士院主要进行对目前国内研究的成果进行评价和归纳,作为研究机构的色彩不是特别浓厚。该院也颁发“日本学士院恩賜奖”,“日本学士院奖”以及“爱丁堡公爵奖”。爱丁堡公爵是日本学士院的名誉会员。.

新!!: 長岡半太郎和日本学士院 · 查看更多 »

日本文化勳章

#重定向 文化勳章.

新!!: 長岡半太郎和日本文化勳章 · 查看更多 »

日本文化勋章

#重定向 文化勳章.

新!!: 長岡半太郎和日本文化勋章 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 長岡半太郎和放射性 · 查看更多 »

拉塞福模型

拉塞福模型,或行星模型、太阳系模型,是物理大師歐尼斯特·拉塞福創立的原子模型。1909年,拉塞福領導設計與發展成功的拉塞福散射,證實了原子核存在於原子中心處。從此,拉塞福推翻了約瑟夫·湯姆孫主張的梅子布丁模型。拉塞福設計的新模型,根據他的實驗結果,擁有幾個重要的特色。大多數的質量和正電荷,都集中於一個很小的區域(原子核);電子則環繞在原子核的外面,像行星的環繞著太陽進行公轉。.

新!!: 長岡半太郎和拉塞福模型 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »