徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

金牛T星

指数 金牛T星

金牛T星(T Tauri star, TTS)是變星的一種,他的命名是依據被發現的原型-金牛座T星(T Tauri)而來的。他們都在鄰近分子雲的地方被發現,例如NGC 1555,並且由光學上的觀測確認是一顆有著強烈的色球譜線的變星。.

27 关系: 原行星原行星盤太阳系太陽主序前星主序星微行星初期恆星體分子雲磁場电磁辐射行星系角动量變星質子-質子鏈反應阿尔文波赫比格Ae/Be星金牛座T色球鋰燃燒NGC 1555X射线林軌跡星周盤星风星斑

原行星

原行星是在原行星盤內大小如同月球尺度的胚胎行星。它們應該是由公里尺度的微行星因彼此的重力相互吸引與碰撞而形成的。根據太陽星雲形成的理論,原行星在軌道輕微的擾動下和因此導致的巨大撞擊與碰撞下逐漸形成真正的行星。 在太陽系中,一般認為微行星的碰撞形成了數百個行星胚胎。這些天體類似穀神星和冥王星,其質量約1022到1023公斤,直徑約數千公里。之後數億年中行星胚胎之間彼此碰撞。目前仍無法得知行星胚胎之間互相碰撞而形成行星的詳細過程,但一般認為最初的碰撞可能將第一代的行星胚胎摧毀,被數量較少,但體積較大的第二代胚胎取代。這樣的過程會持續到撞擊結束,最後只有少數胚胎會形成行星。 早期的原行星有較多的放射性元素,這些數量由於放射性衰變,會隨著時間逐漸減少。來自放射線的熱、撞擊和重力的壓力會使原行星發生局部的熔化,有助於它們增長成為行星。在熔化的區域,較重的元素會向中心下沉,較輕的元素會上昇至表面;這種過程就是所知的行星分化。一些隕石的結構中也顯示出有些小行星也發生過分化的作用。 形成月球的大碰撞說假設是一個巨大的,被稱為忒亞的原行星,在太陽系形成的早期與地球發生碰撞。 在內太陽系中,至少有三顆保留原始特徵的原行星存在,即穀神星、智神星和灶神星。而司琴星也有類似原行星的特徵。柯伊伯带中的矮行星也被認為是原行星。 2013年2月,天文學家首次直接觀測到遙遠恆星外圍由塵埃和氣體組成的盤面內原行星正在形成。.

新!!: 金牛T星和原行星 · 查看更多 »

原行星盤

原行星盤(Proplyd or Protoplanetary Disc)是在新形成的年輕恆星(如金牛T星)外圍繞的濃密氣體,因為氣體會從盤的內側落入恆星的表面,所以可以視為是一個吸積盤。但是,不能將這個過程與恆星形成時的吸積混淆在一起。 環繞金牛座T的原行星盤,溫度與大小都與雙星周圍的盤不同。原行星盤的半徑可以達到1,000天文單位,但是溫度並不高,在它們最內側的溫度也不過1,000K,並且經常有噴流伴隨著。 典型的原行星盤來自主要是氫分子的分子雲。當分子雲分得的大小達臨界質量或是密度,將會因自身重力而塌縮。而當雲氣開始塌縮,這時可稱為太陽星雲,密度將變得更高,原本在雲氣中隨機運動的分子,也因而呈現出星雲平均的淨角動量運動方向,角動量守恆導致星雲縮小的同時,自轉速度亦增加。這種自轉也導致星雲逐漸扁平,就像製作意大利薄餅一樣,形成盤狀。從崩塌起約十萬年後,恆星表面的溫度與主序帶上相同質量的恆星相同時,恆星將變得可以被看見,就像金牛座T的情況。吸積盤中的氣體在未來的一千萬年中,盤面消失前,仍會繼續落入恆星。盤面可能是被年輕恆星的恆星風吹散,或僅僅是因為吸積之後,單純的停止輻射而結束。發現的最老的原行星盤已經存在了二千五百萬年之久。 太陽系形成的星雲假說描述原行星盤如何發展成行星系統。靜電和引力互相作用在盤面上的塵埃粒子和顆粒,使它們生常成為星子。這個過程與會將氣體吹散的恆星風競爭,將氣體累積並將物質拉入金牛座T的中心。 在我們的銀河系內,已經觀測到一些年輕恆星周圍的原行星盤。第一個是在1984年發現的繪架座β,最近的則是哈伯太空望遠鏡發現在獵戶座大星雲內正在形成的原恆星盤。 天文學家已經在距離太陽不遠的恆星,天琴座織女星、北冕座貫索四、和南魚座北落師門,發現大量的原行星盤材料,或許本身就已經是原行星盤。 包含織女和北落師門的北河二共同運動星團被分辨出來。利用希巴古衛星資料,估計北河二星團年齡約二億年(誤差約一億年),這顯示以紅外線觀察到的織女和北落師門周圍的殘餘物質可能已成星子,而不僅僅是原行星盤了。哈伯太空望遠鏡已經成功的觀測北落師門的原行星盤,並證實猜測。.

新!!: 金牛T星和原行星盤 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 金牛T星和太阳系 · 查看更多 »

太陽

#重定向 太阳.

新!!: 金牛T星和太陽 · 查看更多 »

主序前星

主序前星(PMS星或PMS天體)是恆星尚未成為主序星的一個階段。它可以是金牛T星或獵戶FU型變星(質量小於2太陽質量),或是赫比格Ae/Be星(2至8太陽質量)。 這些天體的能量來自於重力收縮(相對於主序星的氫熔合)。在赫羅圖,主序帶前階段,質量在0.5太陽質量以上的恆星,將先沿著林軌跡(幾乎垂直向下),然後沿著亨耶跡(幾乎水平向左的朝向主序帶)移動。 通過光譜的測量和對溫度與重力間的交互作用,主序前星能夠從主序星的矮星中分辨出來,因為主序前星是比較臃腫的恆星。 在周圍的物質都落入中心的恆星之前,它都被視為原恆星。當周圍的氣體和塵粒消散,吸積的過程停止,這顆恆星才能成為主序前星。 當主序前星越過恆星誕生線之後,便能在可見光下被觀測到,而主序前星階段維持的時間在恆星的生命中低於1%(對比下,恆星生命大約有80%在主序帶上)。 一般相信在這個階段的恆星有密集的星周盤,也是行星可能形成的場所。 Category:赫羅分類.

新!!: 金牛T星和主序前星 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

新!!: 金牛T星和主序星 · 查看更多 »

微行星

微行星被認為是存在於原行星盤和岩屑盤內的固態物體。 一種被廣為接受的行星形成理論是維克托·薩夫羅諾夫(Viktor Safronov)的微行星假說,說明行星的形成是由微小的塵埃顆粒經由不斷的碰撞和黏合,形成越來越大的個體。當這個個體的直徑達到大約1公里的大小,就可以直接經由相互間的重力吸引,更快地形成月球尺度的原行星,成為龐然大物。這就是微行星如何經常被定義的。比微行星小的物體依賴布朗運動或是氣體中的湍流運動,使彼此間能發生足以導致黏合的碰撞。還有,微行星也可能在原行星盤的盤面中段塵埃顆粒密集成層的區域,因為經歷重力的不穩定而聚集。許多的微行星會因為劇烈的撞擊而破碎,但是一些最大的微行星可能經歷這個階段後仍能存在並繼續增長成為原行星,然後成為行星。 一般相信這個時期大約在38億年前,在經歷了後期重轟炸期的階段之後,大部分在太陽系內的微行星不是完全被拋出太陽系外,就是進入距離異常遙遠的軌道,例如歐特雲,或是被來自類木行星(特別是木星和海王星)規則的重力輕輕的推送而與更大的物體碰撞。少數的微行星可能被捕獲成為衛星,像是火衛一和火衛二,以及類木行星許多高傾角的衛星。 到今天仍然存在的微行星對科學家是非常有價值的,因為它們蘊含了有關我們的太陽系誕生時的訊息。雖然它們的外表的化學組成可能已經被強烈的太陽輻射改變,但內部的成分基本上仍是微行星形成時未被碰觸過的原始物質。這使每個微行星都像“時間膠囊”,它們的結構能告訴我們太陽星雲以及我們的行星系統形成時的條件。 參考隕石和彗星。.

新!!: 金牛T星和微行星 · 查看更多 »

初期恆星體

初期恆星體 (YSO)表示是一顆進入恆星演化早期階段的天體。 這個分類中包含兩個小組:原恆星和主序前星。有時,也會以質量區分為:大質量初期恆星體(MYSO)、中質量初期恆星體和棕矮星。 初期恆星體經常會依據以光譜能量分布的斜率做標準來分類,這是Lada C.J. 和 Wilking B.A.在1984年提出的,他們以譜指數\alpha \,的間隔和數值為依據,將YSO分為三種(I、II和III): \alpha.

新!!: 金牛T星和初期恆星體 · 查看更多 »

分子雲

分子雲(Molecular cloud 或 Stellar nursery)是星際雲的一種,主要是由氣體和固態微塵所組成。其規模沒有一定的範圍,直徑最大可超過100光年,總質量可達太陽的 106 倍。 氫分子(H2)是分子雲中最普遍的組成物質之一。根據估計,每 1cm3 的分子雲內大約有 104 個氫分子;而在物質較密集的區域(如分子雲的核心),1cm3 內的氫分子則約有 105 個。除了氫以外,分子雲內亦有不少經由核融合合成出的元素。這些元素是多數恆星的主要組成物質,因此分子雲同時也是恆星——甚至是行星系的誕生場所,如太陽系就是其一。 氫分子很難被直接偵測到。通常是利用一氧化碳(CO)偵測氫分子。一氧化碳輻射的光度與分子氫質量的比例幾乎是常數。不過在對其他星系的觀測中有理由懷疑這樣的假設。.

新!!: 金牛T星和分子雲 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 金牛T星和磁場 · 查看更多 »

电磁辐射

電磁辐射,又稱電磁波,是由同相振盪且互相垂直的電場與磁場在空間中以波的形式傳遞能量和動量,其傳播方向垂直於電場與磁場構成的平面。 電磁輻射的載體為光子,不需要依靠介質傳播,在真空中的傳播速度为光速。電磁輻射可按照頻率分類,從低頻率到高頻率,主要包括無線電波、微波、紅外線、可見光、紫外線、X射線和伽馬射線。人眼可接收到的電磁輻射,波長大約在380至780nm之間,稱為可見光。只要是本身溫度大於絕對零度的物體,除了暗物質以外,都可以發射電磁輻射,而世界上並不存在温度等於或低於絕對零度的物體,因此,人們周邊所有的物體時刻都在進行電磁輻射。儘管如此,只有處於可見光频域以内的電磁波,才可以被人們肉眼看到,對於不同的生物,各種電磁波頻段的感知能力也有所不同。.

新!!: 金牛T星和电磁辐射 · 查看更多 »

行星系

行星系(planetary system),又称行星系統,是圍繞某恒星公轉的各種天體的集合,其中包括行星、衛星、小行星、流星體、彗星和宇宙塵埃。太陽和它的行星系統包括地球在內,合稱爲太陽系。.

新!!: 金牛T星和行星系 · 查看更多 »

角动量

在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.

新!!: 金牛T星和角动量 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

新!!: 金牛T星和變星 · 查看更多 »

質子-質子鏈反應

#重定向 質子﹣質子鏈反應.

新!!: 金牛T星和質子-質子鏈反應 · 查看更多 »

阿尔文波

阿尔文波,又称剪切阿尔文波,是等离子体中的一种沿磁场方向传播的波,这种波的频率远低于等离子体的回旋频率,是一种线偏振的低频横波。处在磁场中的导电流体在垂直于磁场的方向上受到局部扰动时,沿着磁感线方向的磁张力提供恢复力,就会激发阿尔文波。阿尔文波是由瑞典物理学家汉尼斯·阿尔文首先预言的,因此得名。后来隆德奎斯特(Lundquist)使用1特斯拉左右的磁场在水银中观察到了阿尔文波,列纳尔特(Lehnert)使用液态钠也证实了阿尔文波的存在。 阿尔文波的色散关系为: 这样的波称为斜阿尔文波。θ.

新!!: 金牛T星和阿尔文波 · 查看更多 »

赫比格Ae/Be星

赫比格Ae/Be星是主序前星 – 光譜類型為A和B的年輕恆星 (8太陽質量)的主序前星,因為演化的非常快速,所以未曾被發現過:當它們能用可見光觀測時(也就是說拱星盤中的氣體和塵埃已經消散),在核心的氫已經開始燃燒,所以它們已經成為主序星了。.

新!!: 金牛T星和赫比格Ae/Be星 · 查看更多 »

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。.

新!!: 金牛T星和锂 · 查看更多 »

金牛座T

金牛座T是在金牛座的一顆變星,並且是金牛T星的原型。他是在1852年10月被約翰·羅素·欣德發現的。從地球看,金牛座T距離畢宿一不遠,像是畢宿星團的成員之一;但實際上它在畢宿一後方,距離約420光年之遙,並不屬於畢宿星團。 像所有的金牛T星一樣,它非常年輕,可能只有100萬歲的年齡。它與地球的距離大約是460光年,視星等則在9.3至14等之間變化。 金牛座T是至少有三顆恆星的系統,但只有一顆可以在可見光的波長下觀察到;另外兩顆在紅外線下可見,而其中一顆還發射出無限電波。使用甚大天線陣的觀察,發現這顆年輕的恆星 (金牛座T本身) 在與它的伴星之一接近之後,軌道會發生戲劇性的改變,甚至可能會被從這個系統中彈出。 實際上很接近的NGC 1555,是一個反射星雲,被稱為欣德的星雲,或是欣德變光星雲。他是被金牛座T照亮的星雲,所以會跟著變光。在1868年被奧托·威廉·馮·斯特魯維發現的星雲NGC 1554和金牛座T有著相同的關係,但是很就消失了,或者根本從未存在過,因此被稱為斯特魯維消失的星雲。 一個赫比格-哈羅天體看起來也與欣德的星雲有所關聯,或許就是金牛座T系統本身。 金牛T風,所以如此命名是因為這顆年輕的恆星目前正在此一階段,這個階段的恆星發展介於從緩慢旋轉的太陽星雲吸積物質,並且已經達到點燃堆積成團塊的氫發展成原恆星的階段。原恆星是雲氣中密度較高的部份,通常氣體和塵埃的質量範圍在104太陽質量,在其自身質量/重力下坍塌,並且繼續吸引其它物質。 一開始,原恆星的質量只有它最終質量的1%,但恆星會隨著吸積的物質增加而逐漸成長並持續發展。數百萬年後,熱融合反應在核心開始,然後強烈的恆星風產生,並阻止了新質量的繼續增加。現在,原恆星的質量已經固定了下來,它將被認為是一顆年輕的恆星,而它未來的發展也被設定好了。 Image:T Tauri 2MASS.jpg|紅外線下的金牛座T.

新!!: 金牛T星和金牛座T · 查看更多 »

色球

色球或色球層(字義就是有顏色的球)是太陽大氣層主要三層的第二層,厚度大約2,000公里,位於光球層的上方和過渡區的下方。 色球層的密度相當低,它起始處,也就是色球層的底部,密度只有光球的10−4倍;相較於地球的大氣層,更只有10−8。這使得它通常無法看見,只有在日全食的短暫時間可以看見它展現出略帶紅色的色調,顏色介於紅色和粉紅色之間 。 然而,若沒有特殊的設備,因為光球層壓倒性的明亮效果,通常是無法看見色球層。 色球層的密度隨著與太陽中心的距離增加而降低,從每立方公分1017顆微粒呈指數下降,或從大約到最外的邊界處為。溫度從內側邊界6,000K 到最低處大約是 3,800K,然後向外增加至外側與日冕過渡區交界處的溫度大約是35,000K。 圖1.呈現色球層的溫度和密度隨距離變化呈現的趨勢。 除了太陽,人類也觀察過其它恆星的色球層。.

新!!: 金牛T星和色球 · 查看更多 »

鋰燃燒

鋰燃燒普遍存在於棕矮星,但不存在於低質量恆星中。恆星,其定義為核心足以達到氫融合的高溫(2.5 × 106 K)條件,迅速的消耗掉它們的鋰。當出現鋰-7和質子碰撞時會產生兩個氦-4的原子核,而出現這種反應的溫度正在氫融合所必須的溫度之下。在低質量的恆星,對流確保整體的鋰很容易耗盡,因此在棕矮星的候選者中,是否存在鋰的譜線是個很重要的指標,存在的可能是棕矮星,否則它就是顆次恆星。 對53顆金牛T星鋰豐度的研究,已經發現鋰枯竭強烈的與大小相關聯,暗示鋰燃燒融合是經由P-P鏈進行的。當前主序最後階段的高度對流和不穩定期間,林忠收縮可能是金牛T星能量的主要來源之一。快速自轉往往會提高混合,增加鋰的運輸進入更深層,使它們在那裏被摧毀。今年T星的自轉速度會隨著年齡的長,通過收縮使自轉加速,以使角動量守恆。隨著年齡的增長,這會導致鋰的流失率增加。鋰燃燒也會增著溫度和質量的增加而增加,並且大多數鋰燃燒的持續都會稍微超過一億年。 鋰燃燒的P-P鏈如下所示: Li-7 p+ + Li-7 -> Be-8 (unstable) _ _ Be-8 -> 2He-4 +_energy -->: P + Li-6 -> Be-7 (不穩定) Be-7 + e -> Li-7 + ν P + Li-7 -> Be-8 (不穩定) Be-8 -> 2He-4 + 能量 這不會發生在質量低於木星60倍的天體。用這種方法,可以依據鋰的消耗來計算恆星的年齡。 使用鋰來區分棕矮星的候選者和低質量恆星的方法稱為鋰測試,最早是由Rafael Rebolo和他的同事發展出來的。質量更大的恆星,像是我們的太陽,可以將鋰保存在外層的大氣,永遠不會獲得鋰枯竭所需要的溫度,但這可以從它們的大小與棕矮星區分開來。在質量上限的棕矮星,在它們年輕的時候就熱到可以耗盡它們的鋰。但質量超過65M_J的棕矮星,在它們5億歲的時候也會耗盡它們的鋰,因此這種測試還不是完美的。 Category:核融合 Category:鋰.

新!!: 金牛T星和鋰燃燒 · 查看更多 »

NGC 1555

NGC 1555又稱欣德變光星雲(Hind's Nebula),是金牛座的一個反射星雲,事實上是金牛座T的原行星盤,為金牛座T型星的最早成員。.

新!!: 金牛T星和NGC 1555 · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

新!!: 金牛T星和X射线 · 查看更多 »

林軌跡

林軌跡(Hayashi track)是原恆星在赫羅圖上經歷原恆星雲之後達到趨近靜力學平衡的路徑。 1961年林忠四郎顯示有一個最小的有效溫度(相當於在赫羅圖的右側邊界)存在,這個臨界溫度大約是4000K,低於這個溫度靜力學平衡便不能維持。因此原恆星雲低於此溫度時必需經由收縮以提高溫度,直到達到臨界溫度。一旦達到臨界溫度,原恆星將繼續收縮至克赫時標,但是有效溫度不會繼續上升,而始終維持在林界限,因此林軌跡在赫羅圖上幾乎是垂直的。 恆星在林界限上是完全的對流體:這是因為他們是低溫和高度的不透明,因此輻射性的能量傳輸是毫無效率的,並且內部因而有大的溫度階梯。質量低於0.5太陽質量的恆星在由前主序星狀態進入主序星時會維持在林軌跡(意思是完全的對流體)的狀態,並在林軌跡的底部進入主序帶。質量高於0.5太陽質量的恆星,當林軌跡結束時,亨耶跡的狀態就會開始,當恆星內部的溫度上升到足夠高時,中央的不透明度便會降低,輻射傳輸能量的效率相對的被提升,會比對流更有效率:對一定質量的恆星而言,在林軌跡中光度最低的恆星是因為他依然完全以對流來傳輸能量。 在林軌跡的對流意謂著恆星將要進入主序帶與有著完全均勻的結構。.

新!!: 金牛T星和林軌跡 · 查看更多 »

星周盤

星周盤 (circumstellar disk)是在環繞著恆星的軌道上,由氣體、塵埃、星子、小行星或碰撞的碎屑堆積,構成花托或環狀的物質。環繞在年輕的恆星周圍,將來可能成為構成行星的原料;環繞在成熟的恆星,它們可以發展成微星;而如果是環繞著白矮星,則表明了是整個恆星演化過程剩下來的材料。這些盤面可以呈現如下的形式:.

新!!: 金牛T星和星周盤 · 查看更多 »

星风

星風(Stellar Wind)是恒星表面发出的物质流,是恒星质量流失的一种途徑。星風在所有恆星中都普遍存在,但速度和强度有很大差别。 太阳发出的星風通常称为太阳风,速度大约为每秒200-300公里。从冕洞吹出的太阳风速度则要快一些,大约每秒700公里。太阳通过星風损失质量的速率约为每年10-14倍太阳质量,在一生中通过星風大约会损失掉0.01%的质量,因此星風对其恆星演化的影响可以忽略不计。红巨星星風的速度较低,大约为每秒20-60公里。但是由于其星風的密度很大,并且红巨星的表面积很大,由于星風造成的质量损失可以达到每年10-8-10-5倍太阳质量。恒星的质量越小,星風损失质量的速率越小,对于太阳这样的中小质量恒星的演化过程来说,星風造成的质量损失可以忽略不计。而对于大质量恒星,如沃尔夫-拉叶星,星風造成的质量损失率很大,在其一生中质量会发生明显的变化,星風对其演化过程具有很重要的影响。 一般认为,在太阳这样的质量较小、温度较低的恒星中,星風是由于温度很高的冕层发生压力扩张造成的。对于质量较大、较“热”的恒星,冕层的温度和恒星表面差不多,这时星風主要是由辐射压驱动的。.

新!!: 金牛T星和星风 · 查看更多 »

星斑

星斑相當於出現在其他恆星上的太陽黑子。太陽黑子因為很小而難以測量其對光度變化的影響,但觀測到的星斑遠比在太陽上的巨大,可以佔據30%觀測到的恆星表面,這相當於太陽黑子的100倍以上。.

新!!: 金牛T星和星斑 · 查看更多 »

重定向到这里:

T Tauri variable金牛座T型变星金牛座T型星

传出传入
嘿!我们在Facebook上吧! »