徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

重氮化合物1,3-偶极环加成反应

指数 重氮化合物1,3-偶极环加成反应

重氮化合物1,3-偶极环加成反应(diazoalkane 1,3-dipolar cycloaddition)是发生在1,3-偶极重氮化合物(尤其是重氮甲烷)与亲偶极体间的1,3-偶极环加成反应。当以烯烃或其衍生物作为这类有机化学反应中的亲偶极体时,反应的产物为吡唑啉类物质。 重氮甲烷与反-戊烯二酸重氮化合物1,3-偶极环加成反应的产物则为1-吡唑啉。因为重氮化合物末端氮原子仅能与酯中的α-碳原子结合,所以此反应具有100%的区域选择性。重氮化合物1,3-偶极环加成反应属于顺式加成(syn addition),亲偶极体的构型在反应中会被保留下来。1-吡唑啉不稳定,且因为分子倾向于朝杂环与酯基间的存在共轭体系的构型转变,所以会自发异构化形成2-吡唑啉。此反应过程如下图所示: 若以苯基重氮甲烷作为反应物,反应的区域选择性将会颠倒。在2-吡唑啉发生简单空气有机氧化产生吡唑后,能继续参与重氮化合物1,3-偶极环加成反应。 重氮化合物1,3-偶极环加成反应的另一个例子是重氮化合物-硫酮偶联反应。.

21 关系: 原子反应物吡唑巴顿–凯洛格反应产物 (化学)区域选择性分子共轭体系空气烯烃衍生物重氮化合物重氮甲烷酯基杂环化合物有机反应有机氧化还原反应1,3-偶极环加成反应

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 重氮化合物1,3-偶极环加成反应和原子 · 查看更多 »

反应物

反应物(在生物中称作--)指的是化学反应中消耗的物质。虽然化学反应中一般也涉及溶剂和催化剂,然而它们通常不被算作反应物。 试剂更强调该种化学物质的某种特定用途。.

新!!: 重氮化合物1,3-偶极环加成反应和反应物 · 查看更多 »

吡唑

吡唑既可以用来指一类简单的芳香杂环有机化合物,它们都是含有五元环,包括三个碳原子和相邻的两个氮原子,也可以用来指这一类化合物的母体,即没有任何取代基。尽管在自然界中很难发现吡唑,但是因为它在制药工业上的意义重大,所以它也被归为生物碱。.

新!!: 重氮化合物1,3-偶极环加成反应和吡唑 · 查看更多 »

巴顿–凯洛格反应

Barton–Kellogg反应(Barton–Kellogg reaction) 酮和硫酮发生偶联,经过重氮化合物中间体,得到烯烃。 重氮化合物可由酮与肼缩合产生的腙再被氧化得到。可以使用的氧化剂有氧化银和双(三氟乙酰氧基)碘苯 等。 硫酮组分可由酮与五硫化二磷作用制备。反应中间体环硫乙烷的脱硫可通过许多膦类(如三苯基膦)来完成。也可以用铜粉来进行脱硫。例如: 与同为烯烃制备方法的McMurry反应相比之下,此反应的优点在于两个不同的酮也可以发生偶联。.

新!!: 重氮化合物1,3-偶极环加成反应和巴顿–凯洛格反应 · 查看更多 »

产物 (化学)

产物是化学反应的生成物。 根据反应速率的不同,产物生成的速度的可以从纳秒到世纪不等。.

新!!: 重氮化合物1,3-偶极环加成反应和产物 (化学) · 查看更多 »

区域选择性

区域选择性,立体化学术语。当一个试剂对一个底物有一个以上的反应中心,而主要进攻其中一个的时候,该反应就被认为具有区域选择性。典型的区域选择性反应比如麦克尔加成。麦克尔加成反应中,底物共轭不饱和羰基化合物有两个亲电中心,即羰基碳和β不饱和碳,当亲核试剂与其作用时,主要(常常是唯一)进攻β不饱和碳,生成β位取代的产物。 此外,常见的区域选择性还有芳香亲电取代反应中苯环定位基表现出来的定位效应;具有多个相同官能团的分子(比如多醇)中这些官能团基于位阻差异体现出来的反应性差异;马氏规则描述的反应选择性等等。.

新!!: 重氮化合物1,3-偶极环加成反应和区域选择性 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 重氮化合物1,3-偶极环加成反应和分子 · 查看更多 »

共轭体系

在化學當中,共軛體系是指具有单键-双键交替结构的体系,其中双键的p軌域通过电子离域相互连接,这通常會降低分子的總能量并增加其穩定性。这里的共軛是指由一个σ鍵相隔的p軌域之间发生轨道重疊(如果是大的原子,也可能涉及d軌域) 孤對電子,自由基或碳正離子都可能是此系統的一部分。這些化合物可能是環狀,非環狀,線狀或雜和狀。 一個共軛體系會有一個p軌域重疊,連接其中間的單鍵。它可以讓π電子游離通過所有相鄰對齊的p軌域。此π電子不屬於單鍵或原子,但是屬於一組的原子。 最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。 共轭体系在单键、双键相互交替(以及其他类型)的共轭体系中,由于分子中原子间特殊的相互影响,使分子更加稳定,内能更小键长趋于平均化的效应。 如苯分子中由于相邻的π键电子轨道的交迭而形成共轭,使其六个碳-碳键的键长均为1.39埃。这是分子在没有外界影响下表现的内在性质。.

新!!: 重氮化合物1,3-偶极环加成反应和共轭体系 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 重氮化合物1,3-偶极环加成反应和碳 · 查看更多 »

空气

气是指地球大气层中的气体混合。它主要由78%的氮气、21%氧气、还有1%的稀有气体和杂质组成的混合物。空气的成分不是固定的,随着高度的改变、气压的改变,空气的组成比例也会改变。但是长期以来人们一直认为空气是一种单一的物质,直到后来法国科学家拉瓦锡通过实验首先得出了空气是由氧气和氮气组成的结论。19世纪末,科学家们又通过大量的实验发现,空气裡还有氦、氩、氙、氖等稀有气体。 在自然状态下空气是无味无臭的。 空气中的氧气对于所有需氧生物来说是必需。所有动物都需要呼吸氧气,植物利用空气中的二氧化碳进行光合作用,二氧化碳是近乎所有植物的唯一的碳的来源。.

新!!: 重氮化合物1,3-偶极环加成反应和空气 · 查看更多 »

烯烃

(alkene)是指含有C.

新!!: 重氮化合物1,3-偶极环加成反应和烯烃 · 查看更多 »

衍生物

衍生物(derivative)指一种简单化合物中的氢原子或原子团被其他原子或原子团取代而衍生的较复杂的产物。例如,以甲烷(CH4)为母体,则甲醇(CH3OH)、甲酸(HCOOH)、一氯甲烷(CH3Cl)等均为甲烷的衍生物。.

新!!: 重氮化合物1,3-偶极环加成反应和衍生物 · 查看更多 »

重氮化合物

重氮化合物(Diazo)是一类含氮的有机化合物,通式为R2C.

新!!: 重氮化合物1,3-偶极环加成反应和重氮化合物 · 查看更多 »

重氮甲烷

重氮甲烷是最简单的重氮化合物,化学式为CH2N2,室温下是一个不稳定的黄色有毒气体,具爆炸性,一般均使用它的乙醚溶液。它用作甲基化试剂,也用于制取亚甲基卡宾。 重氮甲烷是一个线形分子,有多个共振式,中间的氮原子带有部分正电荷,两端的碳和氮原子带有部分负电荷。其分子中可能还含有三原子四电子的大π键,从而导致重氮甲烷的偶极矩实际上并不大,与共振结构预测的结果有偏离。.

新!!: 重氮化合物1,3-偶极环加成反应和重氮甲烷 · 查看更多 »

酯(、德文:Ester),是指有机化学中醇與羧酸或无机含氧酸发生酯化反应生成的产物。酯類除了羧酸酯外,也有硝酸、硫酸等無機含氧酸酯。.

新!!: 重氮化合物1,3-偶极环加成反应和酯 · 查看更多 »

酯基

#重定向 酯.

新!!: 重氮化合物1,3-偶极环加成反应和酯基 · 查看更多 »

杂环化合物

杂环化合物是分子中含有杂环结构的有机化合物。 杂环一概念与碳环相对,指的是成环的原子不仅包括碳,还包括氮、氧或硫等原子。简单的杂环环系从3到10員不等;可以是脂环(如四氢呋喃),也可以是芳环(如吡啶)。复杂的杂环系可以由2个或更多简单环并合而成(如吲哚)。 环中含有氮原子的化合物具有碱性。很多具有生物活性的化合物都是杂环化合物,如维生素B1、组氨酸、DNA的含氮碱基(ATCG)等。血红蛋白分子中含有复杂的卟啉环系。.

新!!: 重氮化合物1,3-偶极环加成反应和杂环化合物 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 重氮化合物1,3-偶极环加成反应和氮 · 查看更多 »

有机反应

有机反应即涉及有机化合物的化学反应,是有机合成的基础。几种基本反应类型为:加成反应、消除反应、取代反应、周环反应、重排反应和氧化还原反应。在有机合成当中,有机反应被广泛的应用于各种人造分子的合成。比如药物,塑料,食品添加剂和合成纤维等等。 早期的有机反应,包括有机燃料的燃烧反应,以及制造肥皂所用的皂化反应。当今有机反应已愈发复杂,其中几个获得诺贝尔化学奖的反应为:1912年的格氏反应、1950年的狄尔斯-阿尔德反应、1979年的维蒂希反应、2005年的烯烃复分解反应和2010年的赫克反应。.

新!!: 重氮化合物1,3-偶极环加成反应和有机反应 · 查看更多 »

有机氧化还原反应

有机氧化还原反应(Organic redox reaction)指有机反应中的氧化还原反应,是有机氧化反应和有机还原反应的统称。在很多有机氧化还原反应中,电子转移并不实际发生,不同于电化学中的概念 。 常以氧化数或氧化态作为碳原子氧化程度的判断:.

新!!: 重氮化合物1,3-偶极环加成反应和有机氧化还原反应 · 查看更多 »

1,3-偶极环加成反应

1,3-偶极环加成反应(1,3-dipolar cycloaddition),或被称为Huisgen反应,Huisgen环加成反应,是发生在1,3-偶极体和烯烃、炔烃或其衍生物之间的一个协同周环的环加成反应。烯烃类化合物在反应中称亲偶极体(dipolarophile)。德国化学家Rolf Huisgen首个应用此类反应以制取五元杂环化合物。 1,3-偶极环加成反应与狄尔斯-阿尔德反应有些相似。根据前线轨道理论,基态时1,3-偶极体的LUMO和亲偶极体的HOMO,以及基态时1,3-偶极体的HOMO和亲偶极体的LUMO,都是为分子轨道对称守恒原理所允许的,因此反应可以发生。1,3-偶极环加成反应因此也分为三类:一类是由1,3-偶极体出HOMO,称为HOMO控制的反应;一类是由1,3-偶极体出LUMO,称为LUMO控制的反应;还有一类就是两种情况都存在,称为(HOMO-LUMO)控制的反应。 以前曾认为1,3-偶极环加成反应是经过一个双自由基的中间体完成的,但现在大多认为1,3-偶极环加成反应经过五元环的过渡态,是总电子数6π体系的协同反应。它受溶剂的极性影响很少,而且是立体专一的顺式加成反应。 分子内或逆向的1,3-偶极环加成反应都是可以发生的。 常见的1,3-偶极环加成反应:.

新!!: 重氮化合物1,3-偶极环加成反应和1,3-偶极环加成反应 · 查看更多 »

重定向到这里:

重氮化合物1,3-偶极体环加成反应重氮烷1,3-偶极环加成反应

传出传入
嘿!我们在Facebook上吧! »