徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

配體

指数 配體

配體(ligand,也稱為配基、配位基)是一個化學名詞,表示可和中心原子(金屬或類金屬)產生鍵結的原子、分子和離子。一般而言,配體在參與鍵結時至少會提供一個電子。配體扮演路易士鹼的角色。但在少数情况中配体接受电子,充当路易斯酸。 在有機化學中,配体常用來保護其他的官能团(例如配体BH3可保護PH3)或是穩定一些容易反應的化合物(如四氢呋喃作為BH3的配体)。中心原子和配基組合而成的化合物稱為配合物。 金屬及類金屬只有在高度真空的環境,可以以氣態、不受和其他原子鍵結的條件存在。除此以外,金屬和類金屬都會和其他原子以配位或共價鍵的方式鍵結。络合物中的配體主宰了中心金屬的的活性,其受配體本身被替換的速度、配體的活性等因素影響。在生物無機化學、藥物化學、均相催化及環境化學等領域中,如何選擇配體都是個重要的課題。 一般配体可依其帶電、大小、其原子特性及可提供電子數(如齿合度或哈普托數)加以分類。而配體的大小可以用其圆锥角來表示。 -->.

45 关系: 原子卡宾卡拜取代基吡啶官能团丁二酮肟三苯基膦一氧化碳乙二胺乙二胺四乙酸乙二醇雙氨乙基醚四乙酸乙腈二乙二醇二甲醚化學分子哈普托數冠醚四氢呋喃硝酸盐硫酸铜硼烷磷化氢离子穴状配体类金属电子药物化学草酸盐齿合度金属配合物配體 (生物化學)酸碱电子理论Hexol橋接配體檸檬酸氢氧根氰化物活性有机化学普鲁士蓝2,2'-联吡啶

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 配體和原子 · 查看更多 »

卡宾

卡宾(Carbene),又称碳烯、碳宾,是含二价碳的电中性化合物。卡宾是由一个碳和其他两个基团以共价键结合形成的,碳上还有两个自由电子。最简单的卡宾是亚甲基卡宾,亚甲基卡宾很不稳定,从未分离出来,是比碳正离子、自由基更不稳定的活性中间体。其他卡宾可以看作是取代亚甲基卡宾,取代基可以是烷基、芳基、酰基、卤素等。这些卡宾的稳定性顺序排列如下: H2C: 2C: 2C: 是一类较新颖的卡宾,也译作,具有特殊的稳定性,有些可以无限期的保存。典型的氮杂环卡宾中,卡宾的二价碳位于咪唑、噻唑、1,2,4-三嗪环系或与两个取代氨基相连的碳上。.

新!!: 配體和卡宾 · 查看更多 »

卡拜

卡拜(Carbyne)是拥有三个自由电子的电中性单价碳活性中间体HC及其衍生物(如EtO2C-C)的统称。卡拜可通过很多方法获得。它可以短寿命的活性中间体存在于气相中。 卡拜可以与金属离子结合形成金属卡拜配合物 (如和)。这类化合物的一种合成方法是让W(CO)6与二异丙基氨基锂(LDA)反应产生,然后再让其与草酰溴或Br2-PPh3和三苯基膦反应。另一种合成方法是用路易斯酸处理甲氧基金属卡宾配合物。.

新!!: 配體和卡拜 · 查看更多 »

取代基

取代基是取代的无机或有机化合物中氢原子的基团,取代发生后,会形成新的化合物。不同的取代基会导致不同的效应,如诱导效应、共振效应、电子效应及立体效应等,从而使不同的化合物产生不同的性质。一般“取代较多”与“氢较少”是同义词。 以下是一些取代基多少影响反应方向的例子:.

新!!: 配體和取代基 · 查看更多 »

吡啶

吡啶(CHN,音同“比定”,,系统名氮杂苯)CAS号110-86-1。分子量79.10。 吡啶由苏格兰化学家于1849年在骨焦油中发现,两年后,安德森通过分馏得到纯品。由于其可燃性,安德森以πῦρ (τὸ)(pyr,意为火)命名。.

新!!: 配體和吡啶 · 查看更多 »

官能团

官能团(英文:Functional group),是决定有机化合物的化学性质的原子和原子团。.

新!!: 配體和官能团 · 查看更多 »

丁二酮肟

丁二酮肟是一種化學為CH3C(NOH)C(NOH)CH3的化學物質,可簡寫為dmgH2。它是丁二酮(或稱雙乙酰)的二肟衍生物,可用於檢驗鈀及鎳。其錯合物在理論化學上頗受關注,可成為酶或催化劑的模型。許多相關的配體可由其他的二酮,如二苯基乙二酮合成。.

新!!: 配體和丁二酮肟 · 查看更多 »

三苯基膦

三苯基膦,分子式(C6H5)3P,白色固体,是磷化氢的三苯(苯、甲苯、二甲苯)取代物。主要表现为还原性和亲核性。在有机合成中有相当广泛的应用。.

新!!: 配體和三苯基膦 · 查看更多 »

一氧化碳

一氧化碳,分子式CO,是無色、無嗅、無味的无机化合物氣體,比空氣略輕。在水中的溶解度甚低,但易溶于氨水。空气混合爆炸极限为12.5%~74%。 一氧化碳是含碳物质不完全燃烧的产物。也可以作为燃料使用,煤和水在高温下可以生成水煤气(一氧化碳与氢气的混合物)。有些現代技術,如煉鐵,還是會產生副產品的一氧化碳。一氧化碳是可用作身體自然調節炎症反應的三種氣體之一(其他兩種是一氧化氮和硫化氫)。 由于一氧化碳与体内血红蛋白的亲和力比氧与血红蛋白的亲和力大200-300倍,而碳氧血红蛋白较氧合血红蛋白的解离速度慢3600倍,当一氧化碳浓度在空气中达到35ppm,就会对人体产生损害,會造成一氧化碳中毒(又称煤气中毒)。 雖然一氧化碳有毒,但動物代謝亦會產生少量一氧化碳,並認為有一些正常的生理功能。.

新!!: 配體和一氧化碳 · 查看更多 »

乙二胺

乙二胺(作為配體時簡稱為en)是化學式為 C2H4(NH2)2 的有機化合物。乙二胺是一種胺類,為無色的鹼性液體,有類似氨的臭味。2008年乙二胺的使用量約500,000,000公斤。Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag, Weinheim.

新!!: 配體和乙二胺 · 查看更多 »

乙二胺四乙酸

乙二胺四乙酸(Ethylenediaminetetraacetic acid),常缩写为EDTA,是一种有机化合物。它是一個六齿配體,可以螯著多種金屬離子。它的4個酸和2個胺的部分都可作為配體的齿,與錳(II)、銅(II)、鐵(III)及鈷(II)等金屬離子組成螯合物。.

新!!: 配體和乙二胺四乙酸 · 查看更多 »

乙二醇雙氨乙基醚四乙酸

EGTA(ethylene glycol tetraacetic acid,乙二醇双氨乙基醚四乙酸)是一种螯合劑,与更为熟知的EDTA有相似的结构。与EDTA相比,EGTA对镁离子的亲和性较弱,因此對鈣離子更具選擇性。EGTA也用於制备与活細胞內環境相似的緩衝溶液,其中鈣離子浓度通常比鎂稀至少一千倍。.

新!!: 配體和乙二醇雙氨乙基醚四乙酸 · 查看更多 »

乙腈

乙腈(Acetonitrile,又稱氰基甲烷),化学式CH3CN。乙腈是無色的液體,是最簡單的有機腈,並廣泛用作极性非质子溶劑。.

新!!: 配體和乙腈 · 查看更多 »

二乙二醇二甲醚

二乙二醇二甲醚,或双(2-甲氧基乙基)醚,是一种高沸点的非质子极性溶剂。它是一种无色透明液体,具有微弱醚类气味,可与水、醇类、二甲醚以及烃类溶剂混溶。 它可由二乙二醇一甲醚在氢氧化钠存在下,与硫酸二甲酯或氯甲烷反应制得;也可由一缩二醇与甲醇反应制得。 二乙二醇二甲醚主要作为有机化学反应中的溶剂。它能够螯合小的阳离子基团,使阴离子更易于反应。所以在使用金属有机试剂的反应,如格氏反应或使用金属氢化物进行的还原反应(如硼氢化反应)中使用本化合物可能能够显著的提高反应速率。 它在高pH下的稳定性和高沸点使其非常适合作为有强碱参与的反应的溶剂或需要较高温度的反应的溶剂。 Category:乙二醇醚 Category:螯合配体.

新!!: 配體和二乙二醇二甲醚 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 配體和化學 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 配體和分子 · 查看更多 »

哈普托數

哈普托數(英文hapticity)是說明在配體中一群相連的原子如何和中心原子配位。配體的hapticity會用希臘字母η來表示,η上標的數字表示配體中有幾個相連的原子和中心原子配位。一般來說上述的標示只適用在不只一個原子參與配位的情形。 如二茂鐵中環戊二烯(Cp)有五個原子參與鍵結,因此其哈普托數為5。 在有機金屬化學中,常用哈普托數來標示有機的配體如何和中心金屬配位。 Category:配位化學 Category:有機金屬化學.

新!!: 配體和哈普托數 · 查看更多 »

冠醚

冠醚是一种杂环有机化合物,包含有多个醚基团。最常见的冠醚就是乙撑氧的低聚物,其中重复的单位是乙烯氧基(-CH2CH2O- 可看作是环氧乙烷断裂碳氧键后的剩余基团)。这一系列中最重要的是四聚体、五聚体和六聚体。之所以用“冠”来命名,是因为就像皇冠可以戴在头上一样,冠醚能够和一个阳离子成键。在冠醚的命名法中,前面那个数字代表了环内的原子数,第二个数字代表氧的个数。冠醚的概念远远大于乙撑氧的低聚物,另外一个很重要的系列是鄰苯二酚的衍生物。 冠醚一般通过卤代烃与醇盐的威廉姆逊合成反应制取。.

新!!: 配體和冠醚 · 查看更多 »

四氢呋喃

四氢呋喃 (THF)无色、可与水混溶、在常温常压下有较小粘稠度的有机液体。这种环狀醚的化学式可写作(CH2)4O。由于它的液态范围很长,所以是一种常用的中等极性非质子性溶剂。它的主要用途是作高分子聚合物的前体。.

新!!: 配體和四氢呋喃 · 查看更多 »

硝酸盐

硝酸鹽是一個多原子離子其分子式NO3−和分子量62.0049克/mol。硝酸鹽同樣描述為有機官能團RONO2。這些硝酸酯是一專業炸藥。 CP#3是硝酸根离子NO3−形成的盐。许多金属都能形成硝酸盐,包括无水盐或水合物。.

新!!: 配體和硝酸盐 · 查看更多 »

硫酸铜

硫酸铜,又稱藍礬,化学式CuSO4,無水為白色粉末,含水为藍色粉末,或因不纯而呈淡灰绿色,是可溶性铜盐。硫酸铜常见的形态为其结晶体,一水合硫酸四水合铜([Cu(H2O)4]SO4·H2O,五水合硫酸铜),为蓝色固体。其水溶液因水合铜离子的缘故而呈现出蓝色,故在实验室里无水硫酸铜常被用于检验水的存在。在现实生产生活中,硫酸铜常用于炼制精铜,與熟石灰混合可製农药波尔多液。硫酸铜属于重金属盐,有毒,成人致死剂量0.9g/kg。若误食,应立即大量食用或飲用牛奶、鸡蛋清等富含蛋白质食品,或者使用EDTA钙钠盐解毒。.

新!!: 配體和硫酸铜 · 查看更多 »

硼烷

烷(Borane)即硼氢化合物,因其物理性质类似于烷烃,故称之为硼烷。在已知的20多种中性硼烷中,最简单的是乙硼烷 B2H6。甲硼烷只在气态状态中发现。 按照硼氢个数比,中性硼烷一般可分为 BnHn+4 类(少氢硼烷)和 BnHn+6 类(多氢硼烷)。此外还有大量的硼烷阴离子:.

新!!: 配體和硼烷 · 查看更多 »

磷化氢

磷化氢,又名膦,分子式:,一种无色、极毒、有魚腥臭味的气体。.

新!!: 配體和磷化氢 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 配體和离子 · 查看更多 »

穴状配体

醚是一类人工合成的,可以与阳离子发生配位的双环和多环多齿配体。“穴醚(cryptand)”一词是指该配体形如空穴,将底物分子容纳在里面。整个分子是一个三维的结构。因此与单环的冠醚相比,穴醚配合物更加稳定,对底物分子的选择性也更强。形成的复合物具有脂溶性。唐纳德·克拉姆、让-马里·莱恩和查尔斯·佩特森通过对穴醚和冠醚进行研究,开创了超分子化学的先例,并因此获得了1987年的诺贝尔化学奖。.

新!!: 配體和穴状配体 · 查看更多 »

类金属

类金属(metalloid)是一个用来分类化学元素的化学名词。基于它们的物理和化学特性,几乎所有元素周期表上的化学元素都可被分类为金属或非金属;但也有一些特性介于金属与非金属之间的元素,称为类金属。硼、硅、锗、砷、锑、碲、钋、砈、Ts等9种元素一般被视为类金属。 “类金属”一词并没有明确的定义,但类金属一般被认为拥有以下特性:.

新!!: 配體和类金属 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 配體和电子 · 查看更多 »

药物化学

药物化学(Medicinal chemistry),简称药化,是建立在化学和生物学基础上,对药物结构和活性进行研究的一门学科。研究内容涉及发现、修饰和优化先导化合物,从分子水平上揭示药物及具有生理活性物质的作用机理,研究药物及生理活性物质在体内的代谢过程。 药物化学的任务包括:研究药物的化学结构和活性间的关系(构效关系);药物化学结构与物理化学性质的关系;阐明药物与受体的相互作用;鉴定药物在体内吸收、转运、分布的情况及代谢产物;通过药物分子设计或对先导化合物的化学修饰获得新化学实体创制新药。.

新!!: 配體和药物化学 · 查看更多 »

草酸盐

草酸盐是草酸形成的盐类,含有草酸根离子(C2O42−或(COO)22−)。由于草酸是二元酸,因此草酸盐分为正盐草酸盐与酸式盐草酸氢盐两类,后者含有HC2O4−。 草酸根离子(见右图)可作配体,与很多金属离子形成配合物,尤其是螯合物。该离子中,含有一个平面的八电子π体系,电子稳定性特别突出。它属于还原性阴离子,可被氧化剂,如高锰酸钾氧化为二氧化碳。 草酸盐有毒,人吞食可能發生草酸盐中毒,导致肾脏疾病甚至死亡。草酸根离子可沉淀钙离子,生成不溶于水的草酸钙。.

新!!: 配體和草酸盐 · 查看更多 »

齿合度

齒合度(denticity)是一個配位化學的名詞,是指在錯合物中,單一配體和中心原子產生鍵結的原子個數。 通常配體只有一個原子和中心原子鍵結,因此齒合度為1,這種的配體也稱為單齒配體。雙齒配體(如草酸根、乙二胺)有二個原子和中心原子鍵結,齒合度為2。EDTA由六個不同的原子和中心原子鍵結,因此EDTA為六齒配體,齒合度為6。 齒合度的英文名稱denticity和dentist(牙醫)有相同表示牙齒的字根。齒合度可以想成是配體以一個點或多個點「咬住」中心原子。 齒合度和哈普托數(hapticity)不同,後者是在配體不是單一原子和中心原子鍵結的情形下,配體參與和中心原子鍵結的電子數。.

新!!: 配體和齿合度 · 查看更多 »

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

新!!: 配體和金属 · 查看更多 »

配合物

配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.

新!!: 配體和配合物 · 查看更多 »

配體 (生物化學)

在生物化學和藥理學中,配體(ligand)是指一種能與受体結合以產生某種生理效果的物質。在蛋白質—配體複合物中,配體通常是與靶蛋白特定結合位點相連的信號觸發分子。而在DNA—配體複合物中,與DNA雙鏈相連的配體在一般情況下可以是任何的小分子或離子甚至是蛋白質。值得注意的是,生物化學中的配體和化學中定義的配體(比如銅氨絡離子中,氨是銅離子的配體)並無實際聯繫,配體未必要結合在金属原子上。 配體與受體的連接由諸如離子鍵的化學鍵或氫鍵、范德華力等分子間作用力維繫。它們的連接過程通常是可逆的,配體與受體之間形成的真正難以斷開的共價鍵在生物界是相當罕見的。 配體在與受體結合後,可以改變它們的立體構型,而立體構型又常常決定了蛋白質的功能。配體包括底物、酶抑制劑、酶激活劑、以及神經遞質。配體與受體結合的難易度與結合後的強度叫做親和力。兩者越容易結合,結合後結合的強度越大,則親和力越強,反之亦然。親和力不僅由配體和受體間的直接的相互作用決定,還由溶劑效應決定,后者間接主導溶液中的非共價性結合。 用放射性同位素標記的已被用作正電子發射計算機斷層掃描(PET)中的放射性示蹤劑。此外,這種物質還被用於在體外進行的配體—受體結合研究。.

新!!: 配體和配體 (生物化學) · 查看更多 »

酸碱电子理论

酸碱电子理论,也称广义酸碱理论、路易斯酸碱理论,是1923年美国化学家吉尔伯特·路易斯提出的一种酸碱理论。该理论认为:凡是可以接受外来电子对的分子、基团或离子为酸(路易斯酸);凡可以提供电子对的分子、基团或离子为碱(路易斯碱)。因為跳脫了限定氫離子與氫氧根的酸鹼概念,这种理论包含的酸碱范围很广,但是,它对确定酸碱的相对强弱来说,没有统一的标度,对酸碱的反应方向难以判断。后来,提出的软硬酸碱理论弥补了这种理论的缺陷。 常見的路易斯酸有:.

新!!: 配體和酸碱电子理论 · 查看更多 »

Hexol

Hexol分子式为(SO4)3,是阿尔弗雷德·维尔纳在1914年以硫酸钴(Ⅱ)为起始原料合成的一种无机有旋光异构性的配合物。它从结构上来讲是一个以羟桥相连的四核钴配合物,也是第一个制得的纯粹不含碳的手性分子,摩尔旋光为−47610°,这是一般有光学活性的有机化合物所无法比拟的。 在制得该配合物后,维尔纳又成功地拆分出左旋体和右旋体。该拆分过程中,维尔纳先用hexol的氯化物盐与手性拆分剂D-(+)-溴代樟脑磺酸银盐反应,沉淀出D-hexol与之生成的盐,然后过滤,并对滤渣和滤液分别进行处理,便可得到D-hexol和L-hexol。hexol的制备和拆分的成功有力证明了维尔纳配位理论的真实和正确性,从而奠定了配位化学的基础。 此外,维尔纳从制备Fremy盐的副产物中,又得到了第二种hexol。该hexol分子不含有手性,维尔纳错误地认为它是一个具有直线型的三核钴结构的配合物: 2004年,对上述hexol的重新分析发现它实际上是一个六核的配合物:.

新!!: 配體和Hexol · 查看更多 »

橋接配體

橋接配體(或称桥联配体、桥连配体)是連接二個或二個以上原子(通常是金屬原子)的配體。配體本身可以是單原子,也可以由多個原子組成。由於所有複雜的有機化合物都可以擔任橋接配體的角色,因此「橋接配體」一詞一般是指較小的配基(如鹵素和擬鹵素)或是特別用來連結二個金屬原子的配基。 在命名有橋接配體的錯合物時,橋接配體前會標示一個帶有上標數字的μ,上標數字表示橋接配體所連接的原子個數。而μ2常會簡稱μ。.

新!!: 配體和橋接配體 · 查看更多 »

檸檬酸

柠檬酸,化學式為 C6H8O7,(Citric Acid,亦称为枸橼酸)它包括3個羧基(R-COOH)基團。是一种中強度有機酸,這是自然在柑橘類水果中產生的一種天然防腐劑,也是食物和饮料中的酸味添加劑。在生物化学中,它是檸檬酸循環的重要中间产物,因此在几乎所有生物的代谢中起到重要作用。此外,它也是一种对环境无害的清洁剂。 很多种水果和蔬菜,尤其是柑橘属的水果中都含有较多的柠檬酸,特别是柠檬和青檸——它们含有大量柠檬酸,在干燥之后,含量可达8%(在果汁中的含量大约为47 g/L)。在柑橘属水果中,柠檬酸的含量介于橙和葡萄柚的0.005 mol/L和柠檬和青柠的0.30 mol/L之间。这个含量随着不同的栽培種和植物的生长情况而有所变化。.

新!!: 配體和檸檬酸 · 查看更多 »

氢氧根

氫氧離子,化學符號為OH-。其中氢和氧之间以共价键连接,整体带一单位的负电荷。常常與不同的元素組成氫氧化物。.

新!!: 配體和氢氧根 · 查看更多 »

氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.

新!!: 配體和氨 · 查看更多 »

氰化物

--是特指带有氰离子(CN−)或氰基(-CN)的化合物,其中的碳原子和氮原子通过參键相连接。这一參键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗稱山奈或山埃(來自英語音譯“Cyanide”),是指包含有氰根离子(CN−)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾和氰化钠。它们多有剧毒,故而为世人熟知。另有有机氰化物,是由氰基通过单键与另外的碳原子结合而成。视结合方式的不同,有机氰化物可分类为腈(-CN)和异腈(-NC),相应的,氰基可被称为腈基(-CN)或异腈基(-NC)。.

新!!: 配體和氰化物 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 配體和水 · 查看更多 »

活性

#重定向 活性度.

新!!: 配體和活性 · 查看更多 »

有机化学

有机化学是研究有机化合物及有機物質的结构、性质、反應的学科,是化学中极重要的一个分支。有机化学研究的對象是以不同形式包含碳原子的物質 ,又称为碳化合物的化学。 有關有机化合物或有機物質結構的研究包括用光譜、核磁共振、红外光谱、紫外光谱、质谱或其他物理或化學方式來確認其組成的元素、組成方式、實驗式及化學式。有關性質的研究包括其物理性質及化學性質,也需評估其,目的是要了解有機物質在其純物質形式(若是可能的話),以及在溶液中或是混合物中的性質。有機反應的研究包括有機物質的製備(可能是有機合成或是其他方式),以及其化學反應,可能是在實驗室中的,或是In silico(經由電腦模擬的)。 有机化学研究的範圍包括碳氫化合物,也就是只由碳和氫組成的化合物,化合物中也有可能还会参与其他的元素,包括氢、 氮、氧和卤素,还有诸如磷、硅、硫等元素。 。有机化学和許多相關領域有重疊,包括药物化学、生物化学、有机金属化学、高分子化学以及材料科学等。 有机化合物之所以引起研究者浓厚的兴趣,是因为碳原子可以形成稳定的长碳链或碳环以及许许多多种的官能基,这种性质造就有机化合物的多样性。有機化合物是所有碳基生物的基礎。有機化合物的應用範圍很廣,包括醫學、塑膠、藥物、、食物、化妆品、护理用品、炸藥及塗料等。.

新!!: 配體和有机化学 · 查看更多 »

普鲁士蓝

普魯士藍(Prussian blue;Preußisch Blau 或 Berliner Blau;化學名稱:亞鐵氰化鐵;分子式:Fe7(CN)18⋅14H2O,或書寫成 · x簡稱:PB)是一種深藍色的顏料,在畫圖和青花瓷器中應用。普魯士藍是狄斯巴赫(Johann Jacob Diesbach)在意外中被發現,他原本是打算製造紅色顏料的。滕士蓝(Turnbull's blue)与普鲁士蓝是同一种物质,只是由不同试剂制取的。 德国的前身普鲁士军队的制服颜色就是使用该种颜色,以至1871年德意志第二帝国成立后相当长一段时间仍然沿用普鲁士蓝军服,直至第一次世界大战前夕方更换成。 普鲁士蓝,或柏林蓝,或滕士蓝的扩展含义并非一种颜色,而是指氰化亚铁这种深蓝色染料。氰化亚铁染料本身在历史上已有多次出现,甚至可追溯至古埃及,直至据现有记载1706年由Johann Jacob Diesbach于柏林人工合成,后经现代手段分析,并开发出工业合成手段,由BASF前身IG Farben工业大批量生产。作为首次出现的工业合成染料,因氰化亚铁的稳定性,且不溶于水,其着色效果远强于以往的有机天然染料靛蓝,虽存在一定毒性,但被德意志第二帝国作为军服染料长时间使用,后北洋政府、国民政府也以其为正规军队的标准染料。再后在中国,因军阀纷争和日本入侵,中国军队的军服染料鱼龙混杂,从土黄到深蓝五花八门,而各路武装中,以国民政府“中央军”为优先供给单位,包括供应使用普鲁士蓝染料的军服统一着装,后又成为电视剧中的一个特色。.

新!!: 配體和普鲁士蓝 · 查看更多 »

2,2'-联吡啶

2,2'-联吡啶是联吡啶异构体之一,无色固体。它是一个双齿螯合配体,可以和很多金属离子形成配合物,因此可作氧化还原指示剂。与钌和铂的配合物具有很强的发光性质,可能有潜在应用。 bipy及其衍生物 可通过吡啶与雷尼镍作用脱氢得到。 常见的2,2'-联吡啶配合物包括:.

新!!: 配體和2,2'-联吡啶 · 查看更多 »

重定向到这里:

络合剂配位体配位基配体配体 (化学)配基配體 (化學)

传出传入
嘿!我们在Facebook上吧! »