徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

热力学循环

指数 热力学循环

热力学循环是一系列传递热量并做功的热力学过程组成的集合,通过压强、温度等状态变量的变化,最终使热力学系统回到初始状态。状态量只依赖于热力学状态,沿热力学循环路径对此类物理量的路径积分结果为零;而像热量和功这样的过程量与循环过程有关,路径积分不为零。热力学第一定律指出在一个循环中输入的净热量总等于输出的净功。过程可重复的特性使得系统能够被连续操作,从而热力学循环是热力学中一个很重要的概念。在实际应用中,热力学循环经常被看作是一个准静态过程并被当作实际热机和热泵的工作模型。 在P-V图上热力学循环可表示为一个闭合曲线,P-V图的Y轴表示压强,X轴表示体积,则闭合曲线所包围的面积等于过程所做的功W\,: 这个功在数值上等于传入系统的热量Q\,: 方程(2)的表达式显示热力学循环类似于一个等温过程,不过在循环过程中系统的内能是变化的,只是当每一次循环结束时系统内能会回到初始值。 如果循环过程在P-V图上是沿顺时针方向进行的,这个循环代表着一个热机,此时的输出功是正值;如果是沿逆时针方向进行的,则它代表这一个热泵,此时的输出功是负值。.

38 关系: 压强卡诺循环可逆过程外燃机奧圖循環布雷顿循环制冷剂喷气发动机冰箱内燃机内能兰金循环四冲程循环等压过程等容过程等熵过程等温过程绝热过程热力学第一定律热力学第二定律热力学系统热力学过程热力学温度热机相變路徑積分迪塞尔循环蒸汽机脉冲式喷气发动机林德-汉普逊循环汽轮机温度温熵图準靜態過程机动车朗肯循环

功(work),也叫机械功,是物理学中表示力对位移的累积的物理量,指从一种物理系统到另一种物理系统的能量转变,尤其是指通过使物体朝向力的方向移动的力的作用下能量的转移。与机械能相似的是,功也是标量,国际单位制单位为焦耳。 “功”一词最初是法国数学家贾斯帕-古斯塔夫·科里奥利创造的。 由动能定理,若一个外力作用于一物体使之动能从Ek0增至Ek,那么,此力所作的机械功为: 其中m是物体的质量,v是物体的速度。 机械功就是力与位移的內積: 若力与位移的夹角小于直角,则机械功为正,亦称为力作正功。若力与位移的夹角大于直角,则机械功为负,或力作负功,或物体克服力作功。 若力的方向与位移方向垂直,则此力不作功: 舉例來說:一個10牛頓(F.

新!!: 热力学循环和功 · 查看更多 »

压强

生在兩個物體接觸表面、垂直於該表面的作用力,亦可稱為壓力。通常來說,在液壓、氣動或大氣層等領域中提到的「壓力」指的實際上是壓强,即在数值上等於接觸表面上每單位面積所受壓力。 壓強是分布在特定作用面上之力與該面積的比值。換句話說,是作用在與物體表面垂直方向上的每單位面積的力的大小。計式壓強是相較於該地之大氣壓的壓強。雖然壓強可用任意之力單位與面積單位進行測量,但是壓強的國際標準單位(每單位平方公尺的牛頓)也被稱作帕斯卡。 一般以英文字母「p」表示。压力與力和--積的關係如下: 其中.

新!!: 热力学循环和压强 · 查看更多 »

卡诺循环

卡诺循环(Carnot cycle)是一個特別的熱力學循環,使用在一個假想的卡諾熱機上,由法国人尼古拉·卡诺于1824年提出,埃米尔·克拉佩龙於1830年代至1840年代擴充,是為了找出熱機的最大的工作效率而分析热机的工作过程。 卡諾循環全由可逆過程組成,其中包括:.

新!!: 热力学循环和卡诺循环 · 查看更多 »

可逆过程

在热力学中,可逆过程是指系统的某些属性能够在无能量损失或耗散的情形下通过无穷小的变化实现反转的热力学过程。如果这一过程是一个热力学循环,则这种循环称为可逆循环。Sears, F.W. and Salinger, G.L. (1986), Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, 3rd edition (Addison-Wesley.)由于这些变化都是无穷小的,热力学系统在整个过程中都处于平衡态。由于在理论上这种过程所需时间为无穷大,完全理论意义上的可逆过程在实际中是不可能实现的。不过,如果系统对所发生变化的反应速度远远大于变化本身,过程中微小的不可逆性则可以忽略,因而理论上经常把无摩擦的准静态过程看作可逆过程。在可逆循环中,系统和其外界环境在每一次循环结束时都保持完全相同的状态。Zumdahl, Steven S. (2005) "10.2 The Isothermal Expansion and Compression of an Ideal Gas." Chemical Principles. 可逆过程的另一种定义是,过程发生后能够被复原并对系统本身或外界不产生任何影响的过程称作可逆过程。在热力学的语义中,一个过程“发生”是指这个热力学系统从初始状态发生变化直到终止状态过程结束。 值得注意的是,物理过程可逆,是指在时间反演变换操作下物理定律形式保持不变。.

新!!: 热力学循环和可逆过程 · 查看更多 »

外燃机

外燃机是利用燃料在器皿外燃烧加热循环工质,使熱能轉化為機械能的一種熱機。例如蒸汽机将锅炉裡的水加热产生的高温高压水蒸气输送到机器内部。.

新!!: 热力学循环和外燃机 · 查看更多 »

奧圖循環

奧圖循環(Otto cycle)是理想的熱力學循環,用來描述標準用火星塞點火的往复式发动机,是汽車引擎中最常見的熱力學循環。 奧圖循環是描述固定質量的氣體在壓力、溫度、體積變化、加入熱量及移除熱量下,其狀態的變化。有上述變化的固定質量氣體稱為系統。此處的系統定義為在汽缸內的氣體。奧圖循環是描述系統內發生的變化,也描述系統對環境的影響。以奧圖循環的例子而言,系統對環境的影響是可以產生足夠的功,可以推動車輛及上面的乘客前進。 奧圖循環包括: 其中等熵的壓縮及膨脹過程,表示其中沒有能量損耗,在過程中也沒有熱會進入系統或是離開系統。因此當時的活塞及气缸被視为是不能傳熱的。在上方的等熵膨脹過程中,系統對外界作功,在下方的等熵壓縮過程中,外界對系統作功,熱是在左邊的加壓過程中進入系統,有些熱在右邊的減壓過程中流出系統。計算後即可得到系統所作的功。 奧圖循環的行程為Moran, Michael J., and Howard N. Shapiro.

新!!: 热力学循环和奧圖循環 · 查看更多 »

布雷顿循环

布雷顿循环(Brayton cycle)是一种热力学循环,是吸气式喷气发动机以及燃气轮机的工作原理。最初的布雷顿发动机使用活塞式压缩机和活塞膨胀机,但更现代的燃气涡轮发动机和吹气式喷气发动机也遵循布雷顿循环。尽管循环通常是作为开放系统运行的(并且实际上如果使用内部燃烧必须如此运行),但为了热力学分析的目的,通常假定废气在进气中被重新使用,使得分析成为封闭系统。 布雷顿循环的命名是按美国工程师 (1830–1892)来进行的,但实际上最早提议和专利化的是1791年的英国工程师。它有时也被称为焦耳循环。与布雷顿循环类似,但使用外部热量并结合使用一个再生器(regenerator)。 两种类型的布雷顿循环,对大气开放和使用内燃室,或封闭并使用热交换器。.

新!!: 热力学循环和布雷顿循环 · 查看更多 »

制冷剂

--,又稱--、致冷劑、--,是各种热机中借以完成能量转化的媒介物质。这些物质通常以可逆的相变(如气-液相变)来增大功率。如蒸汽引擎中的蒸汽、制冷机中的雪种等等。一般的蒸汽机在工作时,将蒸汽的热能释放出来,转化为机械能以产生原动力;而制冷机的雪种则用来將低温处的热量传动到高温处。 传统工业及生活中较常见的工作介质是部分卤代烃(尤其是氯氟烃),但现在由于它们會造成臭氧层空洞而逐渐被淘汰。其他应用较广的工作介质有氨气、二氧化硫和非卤代烃(例如甲烷)。.

新!!: 热力学循环和制冷剂 · 查看更多 »

喷气发动机

喷气发动机(Jet engine)是一种--加速和排出的高速流体做功的热机或电机。它既可以输出推力,也可以输出轴功率。 大部分喷气发动机都是依靠牛顿第三定律工作的内燃机,但也有一些例外。常见的喷气发动机有涡轮风扇发动机、涡轮喷气发动机、火箭发动机、冲压发动机、脈衝壓式噴射引擎等。.

新!!: 热力学循环和喷气发动机 · 查看更多 »

冰箱

冰箱(又称电冰箱,台语称霜橱或冰橱,香港称雪柜,中國大陆稱冰櫃,家用稱冰箱,日本和韓國的漢字皆稱其為冷藏庫,朝鮮在文化語譯法為冷凍機)是以低溫保存食物等物品的机械設備。工業用冰箱適用於工業環境,如餐廳、食品加工和超級市場。.

新!!: 热力学循环和冰箱 · 查看更多 »

内燃机

内燃機(Internal combustion engine,縮寫為ICE)是熱機的一種,能將燃料的化學能轉化動能。一般的實現方式为,燃料與空氣混合燃燒,產生熱能,氣體受熱膨脹,通過機械裝置轉化為機械能對外做功。内燃機有非常廣泛的應用,車輛、船舶、飛機、火箭等的發動機基本都是内燃機,其最常見的例子即為車用汽油機與柴油機。 内燃机的燃烧气体同时也是工作介质,比如汽油机中,汽油燃烧后的气体直接推动活塞做功。与此相对,燃料不作为工作介质的热机则称为外燃机,比如蒸汽机的工作介质(蒸气)并不是燃料。.

新!!: 热力学循环和内燃机 · 查看更多 »

内能

在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 。內能 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 內能是一系統內的狀態函數,因為其值僅取決於該系統的目前狀態,而與達到此一狀態所採之途徑或過程無關。內能是個外延物理量。內能是個基本熱動力位能。使用勒壤得轉換,可從內能開始,在數學上建構出其他的熱動力位能。這些函數的狀態變數,部分外延變數會被其共軛內含變數所取代。因為僅是將外延變數由內含變數所取代並無法得出其他熱動力位能,所以勒壤得轉換是必要的。熱力學系統的另一個基本狀態函數為該系統的熵 ,是個除熵 S 這個狀態變數被內能 U 所取代外,具有相同狀態變數之狀態函數。 雖然內能是個宏觀物理量,內能也可在微觀層面上由兩個假設的量來解釋。一個是系統內粒子的微觀運動(平移、旋轉、振動)所產生的微觀動能。另一個是與粒子間的化學鍵及組成物質的靜止質量能量等微觀力有關之位能。在微觀的量與系統因作功、加熱或物質轉移而產生之能量增損的量之間,並不存在一個簡單的普遍關係。 能量的國際單位為焦耳(J)。有時使用單位質量(公斤)的內能(稱之為「比內能」)會比較方便。比內能的國際單位為 J/kg。若比內能以物質數量(莫耳)的單位來表示,則稱之為「莫耳內能」,且該單位為 J/mol。 從統計力學的觀點來看,內能等於系統總能量的。.

新!!: 热力学循环和内能 · 查看更多 »

兰金循环

#重定向 朗肯循环.

新!!: 热力学循环和兰金循环 · 查看更多 »

四冲程循环

四行程循環(Four-stroke cycle),现代汽车以及工业用途的(汽车、卡车、发电机)内燃机中大多都是四冲程循环的。此技術由德國科學家尼古拉斯·奥托(Nicolaus Otto)于1876年发明,所以又叫奥托循环(Otto cycle)。轉子引擎有四个类似的周期,不过没有用到冲程。一个周期由四个冲程构成,亦即四個活塞在气缸中单方向的直线运动.

新!!: 热力学循环和四冲程循环 · 查看更多 »

等压过程

等压过程是压强不变的热力学过程:\Delta p.

新!!: 热力学循环和等压过程 · 查看更多 »

等容过程

等容过程(也叫等体过程)是体积不变的热力学过程。如果使用理想气体,且气体的质量不变,则能量的增加与温度和体积的增加成正比。例如加热密封、坚固容器中的气体:压强和温度会增加,但体积不变。.

新!!: 热力学循环和等容过程 · 查看更多 »

等熵过程

热力学中的等熵过程(Isentropic process或Isoentropic process)指的是过程中没有发生熵变,熵值保持恒定的过程 可逆绝热过程就是一种等熵过程。等熵过程在温度-熵图(T-S图)中是平行于温度轴的线段。.

新!!: 热力学循环和等熵过程 · 查看更多 »

等温过程

等温过程(Isothermal process)是热力学过程的一种,其中系统的温度不变:ΔT.

新!!: 热力学循环和等温过程 · 查看更多 »

绝热过程

绝热过程(Adiabatic process)是一个绝热体系的变化过程,绝热体系为和外界没有热量和粒子交换,但有其他形式的能量交换的体系,属于封闭体系的一种。绝热过程有绝热压缩和绝热膨胀两种。常见的一个绝热过程的例子是绝热火焰温度,该温度是指在假定火焰燃烧时没有传递热量给外界的情况下所可能达到的温度。现实中,不存在真正意义上符合定义的绝热过程,绝热过程只是一种近似,所以有时也称为绝热近似。 绝热过程分为可逆过程(熵增为零)和不可逆过程(熵增不为零)两种。可逆的绝热过程是等熵过程。等熵过程的对立面是等温过程,在等温过程中,最大限度的热量被转移到了外界,使得系统温度恒定如常。由于在热力学中,温度与熵是一组共轭变量,等温过程和等熵过程也可以视为“共轭”的一对过程。 如果一个热力学系统的变化快到足以忽略与外界的热交换的话,这一变化过程就可以视为绝热过程,又称“准静态过程”。准静态过程的熵增可以忽略,所以视作可逆过程,严格说来,在热力学中,准静态过程与可逆过程没有严格区分,在某些文献中被作为同义词使用。 同样的,如果一个热力学系统的变化慢到足以靠与外界的热交换来保持恒温的话,该过程则可以视为等温过程。.

新!!: 热力学循环和绝热过程 · 查看更多 »

热力学第一定律

熱力學第一定律(First Law of Thermodynamics)是熱力學的四條基本定律之一,能量守恒定律對非孤立系統的擴展。此時能量可以以功W或熱量Q的形式傳入或傳出系統。即: 式中\Delta E_为系统内能的变化量,若外界对该系统做功,则W为正值,反之为负值。 写成微分形式为:.

新!!: 热力学循环和热力学第一定律 · 查看更多 »

热力学第二定律

热力学第二定律(second law of thermodynamics)是热力学的三条基本定律之一,表述热力学过程的不可逆性——孤立系统自發地朝著熱力學平衡方向──最大熵狀態──演化,同样地,第二类永动机永不可能实现。 這一定律的歷史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助魯道夫·克勞修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等。.

新!!: 热力学循环和热力学第二定律 · 查看更多 »

热力学系统

热力学系统(Thermodynamic system)是指用于热力学研究的有限宏观区域,是热力学的研究对象。它的外部空间被称为这个系统的环境。一个系统的边界将系统与它的外部隔开。这个边界既可以是真实存在的,也可以是假想出来的,但必须将这个系统限制在一个有限空间里。系统与其环境可以在边界进行物质,功,热或其它形式能量的传递。而热力学系统可以从它的边界(或边界的一部分)所允许的传递类型进行分类。 热力学系统有一系列的状态函数,比如体积,压强,温度等。这些量都是可以通过实验测量的宏观量。这些量的数值共同决定这个系统的热力学状态。一个热力学系统的状态函数通常存在一个或多个函数关系。这些关系可由状态方程表述。平衡热力学不涉及对这些状态函数的通量的研究。因为由热力学平衡的定义可以自然得到,这些函数的通量的值为零。当然,平衡热力学可能会涉及使通量不为零的过程,但在热力学过程进行前,这些过程必需停止。非平衡热力学允许状态函数通量不为零。通量不为零表示在系统和它的环境间存在物质,能量或熵等的传递。 孤立系统是一种假想存在的系统。这种系统与其外界无任何相互作用。在理想状况下,其内部处于热力学平衡,即它的热力学状态不随时间变化。而非孤立系统根据它的边界的性质可以与它的环境处于热力学平衡。它们也可能处于时时变化或者循环变化(一种稳态)的非平衡状态。系统与其环境的相互作用可以通过热传递或者长程力等方式进行。 热力学系统并非一个普遍概念,并不能代表全部的物理学系统。而这里定义的热力学系统的物理存在可以认为是平衡热力学的基础公设,尽管并没有被列为一条热力学定律。而在一些文献中,热力学第零定律通常的表述被认为是这一公设的一个推论。 热力学系统的概念可以追溯到1824年尼古拉·卡诺对于热机的研究。他当时称其为热机的工作物质。.

新!!: 热力学循环和热力学系统 · 查看更多 »

热力学过程

熱力學過程的定義是一個熱力學系統由開始到完結的狀態中所涉及的能量轉變。在過程中,路徑會因為受到某一些熱力學的變數要保持常數而變得指定,以下將以共軛對來對熱力學過程進行解說,因為當其中一個變數設為常數時,剛好是另一個的共軛對。 首先,壓力和容量是其中一個共軛對。因為兩者都涉及以傳送機械能或動能形式的作功。.

新!!: 热力学循环和热力学过程 · 查看更多 »

热力学温度

热力学温度是温度的绝对测量量,是热力学的主要参数之一。 热力学温度由热力学第二定律定义,理论最低温度为零点。在称为绝对零度该点上,物质的粒子构成具有最小运动。在量子力学的描述中,绝对零度下的物质处于其基态,该状态下其能量最低。热力学温度因此也常被称为绝对温度。 国际单位制指定热力学温标为热力学温度的计量标度,并选择水的三相点273.16K作为基点。历史上一直在使用其他标准。使用华氏度作为单位间隔的朗肯温标,在美国的某些工程领域仍然用作英制工程单位的一部分。ITS-90给出了一个以非常高的精确度估计热力学温度的实用方法。 大体上,体静止时的温度是一种计量物质的粒子构成如分子,原子,亚原子粒子的平动、振动和转动的能量的方法。所有的这些运动的动能和粒子的势能,有时还包括某些其他类型的等效粒子能量构成物体的总内能。在物体不受外力或外力对其不做功的条件下,内能可以被不严格地称作热能。内能可以以多种方式存储于一种物质内,每种构成一个“自由度”。每个自由度有相同的能量平均值k_B T/2(k_B为玻尔兹曼常数),除非其处于量子体系。内部自由度(转动,振动等)适用于室温下的量子体系,平动自由度适用于经典体系,除了在极低的温度(开尔文的分数)下。大多数情况下,热力学温度由粒子的平均平动动能确定。 Category:温度 Category:态函数 Category:国际单位制基本量.

新!!: 热力学循环和热力学温度 · 查看更多 »

热机

熱機,或稱熱引擎(Heat Engine),是能够将热源提供的一部分熱量转化成为对外输出的机械能之机器。热机对外输出的机械能称为「输出功」。热机的工作模式一般可以简化为热力学循环的模型,热机的种类也按背后不同的热学模型命名,比如卡诺热机、迪塞尔热机等等。此外,按照热源或工作特性,也各自有约定成俗的名称,如柴油机、汽油机、蒸汽机等等。热机可以是开放系统,也可以是封闭系统。热源可以是使用煤的蒸汽炉,汽车发动机的燃烧室,也可以是太阳能的蒸汽炉,地热和核反应堆。热机分为内燃机和外燃机两种。 在工程学和热力学中,热机被简化为一个由高温热源TH,工作系统和低温热源TC(可以看作多余能量的排放处)构成的循环。热量由高温热源传递到工作系统中,一部分通过做功转化为机械能,另一部分传到低温热源。在热源和工作系统之间用来进行能量传递和转化的媒介叫做工作物质。.

新!!: 热力学循环和热机 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

新!!: 热力学循环和熵 · 查看更多 »

相變

變(Phase Change)是指物質在外部參數(如:溫度、壓力、磁場等等)連續變化之下,從一種相(態)忽然變成另一種相,最常見的是冰變成水和水變成蒸氣。然而,除了物體的三相變化(固態、液態、氣態)自然界還存在許許多多的相變現象,例如日常生活中另一種較常見的相變是加熱一塊磁鐵,磁鐵的鐵磁性忽然消失。其他在物理學中重要相變列舉如下:.

新!!: 热力学循环和相變 · 查看更多 »

路徑積分

路徑積分可能指的是:.

新!!: 热力学循环和路徑積分 · 查看更多 »

迪塞尔循环

迪塞尔循环(Diesel cycle)是往復式内燃机中的一種熱力學循環,常用在柴油引擎中。在迪塞尔循环中,燃料會注入到燃燒室中,之後燃燒室的氣體會壓縮,使燃料燃燒,產生熱能。迪塞尔循环和四行程引擎中用的奧圖循環不同,奧圖循環會用火花塞點燃燃燒室中的燃料-空氣混合物,而迪塞尔循环不需要火花塞。迪塞尔循环用在、汽車、發電、柴电动力、鐵路機車等。 迪塞尔循环在燃燒一開始時假設是定壓行程(下圖中的V_2至V_3),這是理想的數學模型,實際上的迪塞尔循环在此部份的壓力會增加,但沒有奧圖循環那麼明顯。相反的,理想的奧圖循環在燃燒開始時假設是定容行程。.

新!!: 热力学循环和迪塞尔循环 · 查看更多 »

蒸汽机

蒸汽机是一个能够将水蒸汽中的動能转换为功的热机,由於其中的燃燒過程在熱機外部進行,屬於热机中的外燃機。泵、火車頭和轮船曾使用蒸汽机驱动。蒸汽机在工业革命中起了基本的作用。它為其他機械提供動力 ,還有它的操作不受地理位置及天氣情況影響。 今天的核能發電及火力發電仍使用蒸汽渦輪發動機来將熱能轉換為電能。 蒸汽机需要一个使水沸腾产生高压蒸汽的锅炉,这个锅炉可以使用木头、煤、石油或天然气甚至垃圾作为热源。蒸汽膨胀推动活塞做功。.

新!!: 热力学循环和蒸汽机 · 查看更多 »

脉冲式喷气发动机

#重定向 脉冲喷气式发动机.

新!!: 热力学循环和脉冲式喷气发动机 · 查看更多 »

林德-汉普逊循环

林德-汉普逊循环用于,特别是空气分离。 和卡尔·冯林德于1895年分别独立地申请了该循环的专利。 林德-汉普逊系统引入了再生冷却——一种正反馈冷却系统。热交换器布置允许绝对温差(e.g.0.27 °C/atm J-T下空气的冷却)超过单级冷却,并达到液化“固定”气体所需的低温。 汉普森-林德循环与西门子循环的不同在于膨胀阶段。中气体对外做功降温度降低,林德-汉普逊循环则仅依赖于焦耳-汤姆逊效应。优点是冷侧不需要移动部件。.

新!!: 热力学循环和林德-汉普逊循环 · 查看更多 »

汽轮机

汽轮机可以指:.

新!!: 热力学循环和汽轮机 · 查看更多 »

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

新!!: 热力学循环和温度 · 查看更多 »

温熵图

在热力学中使用温熵图将热力学过程或循环期间的温度变化及比熵可视化。并有助于在过程中将热传递可视化。对于可逆(理想)过程, T-s 曲线下的面积是在整个过程期间传递给系统的热量。 等熵过程在 T-s图上为垂直线,而等温过程为水平线。.

新!!: 热力学循环和温熵图 · 查看更多 »

準靜態過程

在熱力學裡,準靜態過程是系統總和環境處於熱平衡的過程。現實中準靜態過程不存在,但「足夠(sufficiently)緩慢」的過程可視為一良好的近似。 準靜態過程可以可逆,亦可不可逆。當過程中熵增加時,則為不可逆。反之,任何可逆過程都必為準靜態。 但應注意若兩物體間交換速率為一絕熱的隔板所控制(Sears and Salinger,1986)-時,不論過程發生得如何緩慢,兩個物體的狀態都絕不會無限地趨近平衡態,因为熱平衡需要兩個物體具有絕對相同的溫度。 在有些文獻中,對於準靜態過程及可逆過程是有些模糊不明的,且有時它們會被當做同義詞(Lavenda,1978)。.

新!!: 热力学循环和準靜態過程 · 查看更多 »

机动车

#重定向 機動車輛.

新!!: 热力学循环和机动车 · 查看更多 »

朗肯循环

朗肯循环(Rankine Cycle)也被称为兰金循环,是一种将热能转化为功的热力学循环。郎肯循环从外界吸收热量,将其闭环的工质,通常使用水加热做功。郎肯循环产生世界上90%的电力,包括几乎所有的太阳能热能,生物质能,煤炭与核能的电站。它是根据苏格兰博学家和格拉斯哥大学教授威廉·約翰·麥誇恩·蘭金(William John Macquorn Rankine)的名字命名的。郎肯循环是支持蒸汽机的基本熱力學原理。.

新!!: 热力学循环和朗肯循环 · 查看更多 »

重定向到这里:

热力循环

传出传入
嘿!我们在Facebook上吧! »