徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

漢彌爾頓矩陣

指数 漢彌爾頓矩陣

在數學上,若一個階矩陣是一個漢彌爾頓矩陣,則對此矩陣而言,會是一個對稱矩陣,而其中這個矩陣具有以下的形式: \begin 0 & I_n \\ -I_n & 0 \\ \end 其中是階矩陣單位矩陣。也就是說,若是一個漢彌爾頓矩陣若且唯若,在此處表示矩陣的轉置.

19 关系: 基 (線性代數)對稱矩陣交換子当且仅当單位矩陣共轭转置矩阵矩阵指数特征向量特徵多項式转置矩阵辛向量空间辛矩陣辛群李代數李群施普林格科学+商业媒体斜漢彌爾頓矩陣

基 (線性代數)

在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.

新!!: 漢彌爾頓矩陣和基 (線性代數) · 查看更多 »

對稱矩陣

在線性代數中,對稱矩陣是一個方形矩陣,其轉置矩陣和自身相等。 對稱矩陣中的右上至左下方向元素以主對角線(左上至右下)為軸進行對稱。若將其寫作A.

新!!: 漢彌爾頓矩陣和對稱矩陣 · 查看更多 »

交換子

在抽象代数中,一个群的交換子(commutator)或换位子是一个二元運算子。设g及h 是 群G中的元素,他們的交換子是g −1 h −1 gh,常記為。只有当g和h符合交换律(即gh.

新!!: 漢彌爾頓矩陣和交換子 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

新!!: 漢彌爾頓矩陣和当且仅当 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

新!!: 漢彌爾頓矩陣和單位矩陣 · 查看更多 »

共轭转置

矩阵A的共轭转置A^*(又称埃尔米特共轭、埃尔米特转置)定义为: 其中(\cdot)_表示矩阵i行j列上的元素,\overline表示标量的复共轭。 这一定义也可以写作: 其中A^\mathrm \,\!是矩阵A的转置,\overline\,\!表示对矩阵A中的元素取复共轭。 通常用以下记号表示矩阵A的共轭转置:.

新!!: 漢彌爾頓矩陣和共轭转置 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 漢彌爾頓矩陣和矩阵 · 查看更多 »

矩阵指数

矩阵指数是方块矩阵的一种矩阵函数,与指数函数类似。矩阵指数给出了矩阵李代数与对应的李群之间的关系。 设X为n×n的实数或复数矩阵。X的指数,用eX或exp(X)来表示,是由以下幂级数所给出的n×n矩阵: 以上的级数总是收敛的,因此X的指数是定义良好的。注意,如果X是1×1的矩阵,则X的矩阵指数就是由X的元素的指数所组成的1×1矩阵。.

新!!: 漢彌爾頓矩陣和矩阵指数 · 查看更多 »

特征向量

#重定向 特征值和特征向量.

新!!: 漢彌爾頓矩陣和特征向量 · 查看更多 »

特徵多項式

在線性代數中,對一個線性自同態(取定基即等價於方陣)可定義其特徵多項式,此多項式包含該自同態的一些重要性質,例如行列式、跡數及特徵值。.

新!!: 漢彌爾頓矩陣和特徵多項式 · 查看更多 »

在线性代数中,一個n \times n的矩陣\mathbf的跡(或跡數),是指\mathbf的主對角線(從左上方至右下方的對角線)上各個元素的總和,一般記作\operatorname(\mathbf)或\operatorname(\mathbf): 其中\mathbf_代表矩陣的第i行j列上的元素的值。一個矩陣的跡是其特徵值的總和(按代數重數計算)。 跡的英文為trace,是來自德文中的Spur這個單字(與英文中的Spoor是同源詞),在數學中,通常簡寫為「Sp」或「tr」。.

新!!: 漢彌爾頓矩陣和跡 · 查看更多 »

转置矩阵

在线性代数中,矩阵A的转置是另一个矩阵AT(也写做Atr, tA或A′)由下列等价动作建立.

新!!: 漢彌爾頓矩陣和转置矩阵 · 查看更多 »

辛向量空间

数学中,一个辛矢量空间是带有辛形式 ω 的向量空间 V,所谓辛形式即一个非退化斜对称的双线性形式。 确切地说,一个辛形式是一个双线性形式 ω :V × V → R 满足:.

新!!: 漢彌爾頓矩陣和辛向量空间 · 查看更多 »

辛矩陣

在數學中,辛矩阵是指一個2n \times 2n的矩阵M(通常佈於實數或複數域上),使之滿足 其中M^T表M的轉置矩陣,而\Omega是一個固定的可逆斜對稱矩陣;這類矩陣在適當的變化後皆能表為 \begin 0 & I_n \\ -I_n & 0 \\ \end 或 \begin0 & 1\\ -1 & 0\end & & 0 \\ 0 & & \begin0 & 1 \\ -1 & 0\end \end 兩者的差異僅在於基的置換,其中I_n是n \times n 單位矩陣。此外,\Omega 行列式值等於一,且其逆矩陣等於-\Omega。.

新!!: 漢彌爾頓矩陣和辛矩陣 · 查看更多 »

辛群

在數學中,辛群可以指涉兩類不同但關係密切的群。在本條目中,我們分別稱之為Sp(2n,F)與Sp(n)。後者有時也被稱作緊緻辛群以資區別。許多作者偏好不同的記法,通常是差個二的倍數。本條目採用的記法與矩陣的大小相稱。.

新!!: 漢彌爾頓矩陣和辛群 · 查看更多 »

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

新!!: 漢彌爾頓矩陣和李代數 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 漢彌爾頓矩陣和李群 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

新!!: 漢彌爾頓矩陣和施普林格科学+商业媒体 · 查看更多 »

斜漢彌爾頓矩陣

在線性代數當中,斜漢彌爾頓矩陣是一類與在辛向量空间上的反對稱双线性映射相對應的矩陣。 設V為一個向量空間,在其上有著辛形式\Omega。則如此的空間其維度必然是偶數維的。在此空間中,當「x, y \mapsto \Omega(A(x), y)是斜對稱的」這條件滿足時,一個線性映射A:\; V \mapsto V被稱作對\Omega的斜漢彌爾頓算子(skew-Hamiltonian operator)。 在V中選擇適當的基 e_1,...

新!!: 漢彌爾頓矩陣和斜漢彌爾頓矩陣 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »