徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

数字信号

指数 数字信号

數位訊號可以有多重的含义。它可以用来表示已经数字化的离散时间信号,或者表示數位系統中的波形信号。.

10 关系: 取樣二进制位元函数离散时间信号电子技术量化電子計算機数学数字电路

取樣

在信号处理领域,采样是将信号从连续时间域上的模拟信号转换到离散时间域上的离散信号的过程,以采样器实现。通常采样与量化联合进行,模拟信号先由采样器按照一定时间间隔采样获得时间上离散的信号,再经模数转换器(ADC)在数值上也进行离散化,从而得到数值和时间上都离散的数字信号。很多情况下所说的“采样”就是指这种采样与量化结合的过程。 通过采样得到的信号,是连续信号(例如,现实生活中的表示压力或速度的信号)的离散形式。连续信号通常每隔一定的时间间隔被模数转换器(ADC)采样,当时时间点上的连续信号的值被表现为离散的,或量化的值。 这样得到的信号的离散形式常常给数据带来一些误差。误差主要来自于两个方面,与连续模拟信号频谱有关的采样频率,以及量化时所用的字长。采样频率指的是对连续信号采样的频度。它代表了离散信号在和时域和空间域上的精确度。字长(比特的数量)用来表示离散信号的值,它体现了信号的大小的精确性。 在一个理论采样器中,一个连续信号乘以将产生另外一个连续信号。只有当信号被量化之后它才变成数字信号,所有三个指数都被离散化。 信号处理中的基础定理采样定理指出,被采样信号不能被清晰地表示出频率超过采样频率一半的组成信号。这个频率(采样频率的一半)称为奈奎斯特频率。超过奈奎斯特频率的频率N能够在数字信号中看到,但是它们的频率是不确定的。也就是说,一个频率为f的成份频率不能从其它的成份频率2N-f、2N+f、4N-f等中区分开来。这个不确定性称为混叠。为了更加完美地处理这个问题,许多模拟信号在转换成数字表示之前使用抗混叠滤波器(通常是低通滤波器)滤除高于奈奎斯特频率的频率分量。 采样定理的推广定理指出,最高频率超过奈奎斯特频率的信号同样能够被采样,前提是已知这一信号的频带范围,并且信号带宽与采样频率须满足一定的关系。 在采样定理的约束的范围内,最初的信号能够在来自于理想样品集合的采样值的精度范围内被完全地重建起来。重建的信号是使用每个样品衡量一个Sinc函数并且使用奈奎斯特-香农插值公式累加结果得到的。.

新!!: 数字信号和取樣 · 查看更多 »

二进制

在數學和數字電路中,二進制(binary)數是指用二進制記數系統,即以2為基數的記數系統表示的數字。這一系統中,通常用兩個不同的符號0(代表零)和1(代表一)來表示。以2為基數代表系統是二進位制的。數字電子電路中,邏輯門的實現直接應用了二進制,因此現代的計算機和依赖計算機的設備裡都用到二進制。每個數字稱為一個位元(二進制位)或比特(Bit,Binary digit的縮寫)。.

新!!: 数字信号和二进制 · 查看更多 »

位元

位元(Bit),亦称二進制位,指二进制中的一位,是資訊的最小单位。Bit是Binary digit(二进制数位)的缩写,由数学家John Wilder Tukey提出(可能是1946年提出,但有资料称1943年就提出了)。这个术语第一次被正式使用,是在香农著名的论文《通信的数学理论》(A Mathematical Theory of Communication)第1页中。 假设一事件以A或B的方式发生,且A、B发生的概率相等,都为0.5,则一个二进位可用来代表A或B之一。例如:.

新!!: 数字信号和位元 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 数字信号和函数 · 查看更多 »

离散时间信号

离散时间信号的(时间)自变量仅在离散时刻有定义。大多数离散时间信号是由对连续时间信号采样得到的。取值上可以仍然取连续值。 信号可以以时间序列表示。对于一维信号,以两个向量方式表示,例如 更高维的信号也可以用多维向量表示。.

新!!: 数字信号和离散时间信号 · 查看更多 »

电子技术

电子技术是根据电子学的原理,运用電子元件去设计和制造某种特定功能的电路以解决实际问题的科学,包括--电子技术和电力电子技术两大分支。--电子技术包括模拟电子技术和数字电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。.

新!!: 数字信号和电子技术 · 查看更多 »

量化

量化可以指:.

新!!: 数字信号和量化 · 查看更多 »

電子計算機

--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.

新!!: 数字信号和電子計算機 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 数字信号和数学 · 查看更多 »

数字电路

数字电路或数字集成电路是由许多的逻辑门组成的复杂电路。与模拟电路相比,它主要进行数字信号的处理(即信号以0与1两个状态表示),因此抗干扰能力较强。数字集成电路有各种门电路、触发器以及由它们构成的各种组合逻辑电路和时序逻辑电路。一个数字系统一般由控制部件和运算部件组成,在时脈的驱动下,控制部件控制运算部件完成所要执行的动作。通过類比數位轉換器、數位類比轉換器,数字电路可以和模拟电路互相连接。.

新!!: 数字信号和数字电路 · 查看更多 »

重定向到这里:

數位信號數位訊號數碼訊號

传出传入
嘿!我们在Facebook上吧! »