徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

天体测量学

指数 天体测量学

天体测量学或測天學(Astrometry)是天文学中最古老也是最基礎的一個分支,主要以測量恆星的位置和其他會運動天體的距離和動態。他是傳統科學中的一個子科目,後來發展出以定性研究為主體的位置天文學。天文測量學的歷史,在西方可以追溯到依巴谷(Hipparchus),他編輯了第一本的星表,列出了肉眼可見的恆星並發明了到今天仍沿用的視星等的尺標。現代的天體測量學建立在白塞耳的基本星表上,這是以布拉德雷在西元1750至1762年間的測量為基礎,提供了3,222顆恆星的平均位置。 除了提供天文學家基本的參考座標系作為她們在天文觀測報告之用外,天文測量學也是天體力學、恆星動力學和星系天文學等學門的基礎。在觀測天文學中,天文測量的技術協助鑑別出各種天體獨特的運動。他的設備也用於守時(keeping time),因為協調世界時(UTC)是在確切觀測地球自轉的基礎上,以閏秒的調整與原子時間取得協調與一致。天文測量學也與極端複雜的宇宙距離尺度有所關聯,因為他用於建立視差以估計銀河系內恆星的距離。.

64 关系: 基本星表协调世界时天体测量学天球天球坐标系统天體天體力學天文学家天文學天文航海太陽太陽系外行星小行星小行星25000尼古拉·哥白尼中子星弗里德里希·威廉·贝塞尔引力位置圭表地球自转分支喜帕恰斯哥白尼原則光行差球面天文学球面幾何學科学第谷·布拉赫类地行星紫外线红外线無線電波源類太陽恆星观测天文学视差视星等超新星軌道运动近地小行星赤道仪闰秒银河系X射线暗物质恒星恆星動力學業餘天文學氣體巨星...測量準確與精密星座星系星系天文學星盘星際爭霸戰星表星曆表方位方位天文學日晷时间感光耦合元件 扩展索引 (14 更多) »

基本星表

基本星表是一系列對小恆星的位置有著高精度定位資料,用來定義天體參考框架,做為測量恆星位置的標準座標系統的六個天體測量星表之一。.

新!!: 天体测量学和基本星表 · 查看更多 »

协调世界时

没有描述。

新!!: 天体测量学和协调世界时 · 查看更多 »

天体测量学

天体测量学或測天學(Astrometry)是天文学中最古老也是最基礎的一個分支,主要以測量恆星的位置和其他會運動天體的距離和動態。他是傳統科學中的一個子科目,後來發展出以定性研究為主體的位置天文學。天文測量學的歷史,在西方可以追溯到依巴谷(Hipparchus),他編輯了第一本的星表,列出了肉眼可見的恆星並發明了到今天仍沿用的視星等的尺標。現代的天體測量學建立在白塞耳的基本星表上,這是以布拉德雷在西元1750至1762年間的測量為基礎,提供了3,222顆恆星的平均位置。 除了提供天文學家基本的參考座標系作為她們在天文觀測報告之用外,天文測量學也是天體力學、恆星動力學和星系天文學等學門的基礎。在觀測天文學中,天文測量的技術協助鑑別出各種天體獨特的運動。他的設備也用於守時(keeping time),因為協調世界時(UTC)是在確切觀測地球自轉的基礎上,以閏秒的調整與原子時間取得協調與一致。天文測量學也與極端複雜的宇宙距離尺度有所關聯,因為他用於建立視差以估計銀河系內恆星的距離。.

新!!: 天体测量学和天体测量学 · 查看更多 »

天球

天球(英語:Celestial sphere),是在天文學和導航上想出的一個與地球同圓心,並有相同的自轉軸,半徑無限大的球。天空中所有的物體都可以當成投影在天球上的物件。地球的赤道和地理極點投射到天球上,就是天球赤道和天極。天球是位置天文學上很實用的工具。 在亞里斯多德和托勒密的模型,天球想像成實際的物體,而不僅僅是一個幾何的投影(參見天球模型)。.

新!!: 天体测量学和天球 · 查看更多 »

天球坐标系统

天球坐標系統,是天文學上用來描繪天體在天球上位置的坐標系統。有許多不同的坐標系統都使用球面坐標投影在天球上,類似於使用在地球表面的地理坐標系統。這些坐標系統的不同處只在用來將天空分割成兩個相等半球的大圓,也就是基面的不同。例如,地理坐標系統的基面是地球的赤道。每個坐標系統的命名都是依據其所選擇的基面。.

新!!: 天体测量学和天球坐标系统 · 查看更多 »

天體

天體(astronomical object,也稱為celestial object)是在可觀測宇宙中,經由科學確認其存在的物體、或是結構。 天體可能像恆星、行星、彗星等結合較緊密的星體或類星體,也可能是指一個複雜的,彼此關聯較鬆散的結構,如星團、星系,其中可能包括許多其他的星體,甚至有其他更小的結構。 天體的例子包括行星系、星团、星云及星系,而小行星、 月球、行星、恒星等則算是星體或類星體。彗星若只考慮其以冰和灰塵組成的彗核,是一個類星體,但若考慮彗核及其彗髮、彗髮,則是一個關聯較鬆散的天體。.

新!!: 天体测量学和天體 · 查看更多 »

天體力學

天體力學是天文學的一個分支,涉及天體的運動和萬有引力的作用,是應用物理学,特别是牛顿力学,研究天体的力學運動和形狀。研究對象是太陽系內天體與成員不多的恆星系統。以牛頓、拉格朗日與航海事業發達開始,伴著理論研究的成熟而走向完善的。 天體力學可分六個範疇:攝動理論、數值方法、定性理論、天文動力學、天體形狀與自轉理論、多體問題(其內有二體問題)等。 天體力學也用於編制天體曆,而1846年以攝動理論發現海王星也是代表著天體力學發展的標誌之一。天體力學的卓越成就是發展出zh-cn:航天动力学; zh-tw:太空動力學;-,研究和發展出各式人造衛星的軌道。.

新!!: 天体测量学和天體力學 · 查看更多 »

天文学家

天文学家是研究天文学、宇宙学、天体物理学等相关学科的科学家。因为有些哲学家、物理学家、数学家对天文理论有着不可忽视的影响,所以下面的列表中也包括这些人。.

新!!: 天体测量学和天文学家 · 查看更多 »

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

新!!: 天体测量学和天文學 · 查看更多 »

天文航海

天文航海指通过天文观测推算船只位置的航海导航方法。航行者通过六分仪测量极星高度可以推算出所在地纬度;观测星体的地方时角并配合天文钟计算经度,从而完成海上定位。天文航海具有全球覆盖、误差稳定、独立性好的优点;但受天气影响较大。 Category:導航 Category:航海 Category:天文学.

新!!: 天体测量学和天文航海 · 查看更多 »

太陽

#重定向 太阳.

新!!: 天体测量学和太陽 · 查看更多 »

太陽系外行星

太陽系外行星或系外行星,指在太陽系之外的行星。截至2018年5月5日,已經被確認的系外行星總共有3767顆(另有超過2300顆尚未被確認),當中至少有77%是透過凌日現象發現的;這些行星分屬2816個行星系,其中有628個多行星系。克卜勒任務已經檢測到18,000顆行星候選者,包括262顆位於潛在適居帶的候選者。 在銀河系,估計有數十億顆恆星(若每顆恆星都至少有一顆行星,將導致有1,000億至4,000億顆行星),不只在恆星周圍有行星,也有自由移動的行星質量天體,而已知最靠近的系外行星是比鄰星b。 幾乎所有已經發現的系外行星都在我們自己的銀河系內,但是有少量的銀河系外行星可能可以被檢測出來。哈佛-史密松天體物理中心在2013年1月提出的一份報告中提到:估計在銀河系內「至少有170億顆」地球尺度的系外行星。 數百年來,許多哲學家和科學家都認為在太陽系以外應該也有行星的存在,但是沒有辦法知道行星有多普遍,或是與太陽系行星的相似度又是如何。在19世紀,許多的偵測方法被提出來,但最終所有的天文學家得到的結果都是否定的。第一個被確認的檢測出現在1992年,發現有幾顆質量類似地球的天體環繞著脈衝星PSR B1257+12。在主序帶恆星發現行星的第一個偵測結果出現在1995年,在鄰近的飛馬座51發現了以4天週期公轉一週的巨大行星。由於觀測技術的進步,自此之後偵測到的數量與效率迅速的增加。有些系外行星被大望遠鏡直接拍攝到影像,但絕大多數的系外行星都是經由徑向速度測量檢出的。除了系外行星,「系外彗星」(在太陽系之外的彗星)也被發現,也許在銀河系內也是很普遍的。 最常見的系外行星是巨大的行星,相信是類似於木星或海王星,但這也反應了取樣偏差,因為大質量的行星比較容易被觀察到。一些相對比較輕的系外行星,質量只有地球的幾倍(現在所謂的超級地球);如眾所周知,在統計上的研究表明它們的數量應該超過巨大的行星。雖然現在已經發現一小撮包括地球大小和更小的行星,似乎表現出其它的地球類似體屬性。也存在著有這行星質量的天體環繞著棕矮星和不受到恆星拘束在太空中自由移動的行星;然而,「行星」這個名詞尚未應用在這些天體上。 發現的太陽系外行星,特別是軌道位於適居帶,極有可能有液態水存在表面的那些行星(還因此可能有生命),提高了搜尋外星生命的興趣。因此,尋找太陽系外的行星還包括適居行星,在太陽系外的行星適合承載生命的研究中,被考慮的因素相當廣泛。 在2013年1月7日,來自克卜勒任務太空天文台的天文學家宣布發現了KOI-172.02,一顆像地球的系外行星候選者,在一顆類似太陽的恆星的適居帶中環繞著,可能是「存在著外星生命的主要候選者」。.

新!!: 天体测量学和太陽系外行星 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: 天体测量学和小行星 · 查看更多 »

小行星25000

小行星25000(25000 Astrometria)是一颗绕太阳运转的小行星,为主小行星带小行星。该小行星于1998年7月28日发现。.

新!!: 天体测量学和小行星25000 · 查看更多 »

尼古拉·哥白尼

尼古拉·哥白尼(Nicolaus Copernicus,Mikołaj Kopernik,)是文艺复兴时期波兰数学家、天文学家,他提倡日心说模型,提到太陽為宇宙的中心。1543年哥白尼临终前发表了《天體運行論》一般認為他著的是現代天文學的起步點。它开启了哥白尼革命,并对推动科学革命作出了重要贡献。 哥白尼出生于皇家普魯士,该地区自1466年隶属于波兰王国。哥白尼获得了教会法规博士学位,同时也是一名医生,通晓多国语言,了解经典文学,能够胜任翻译,做过执政官、外交官,也是一名经济学家(后续几项都没有学历学位)。1517年,哥白尼总结了货币量化理论,成为当今经济学的重要基础之一。1519年,哥白尼在托马斯·格雷沙姆之前总结出了劣幣驅逐良幣理论的前身。.

新!!: 天体测量学和尼古拉·哥白尼 · 查看更多 »

中子星

中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.

新!!: 天体测量学和中子星 · 查看更多 »

弗里德里希·威廉·贝塞尔

弗里德里希·威廉·贝塞尔(Friedrich Wilhelm Bessel,),德国天文学家及數學家。他精确测定了岁差常数和恒星视差。 贝塞尔出身贫寒,少年时只读过4年书。15岁在商行当学徒,尤其对国际贸易感兴趣。此后,他逐渐对天文学产生了兴趣,开始自学数学和天文学。 1810年,他被普鲁士国王腓特烈·威廉三世任命为柯尼斯堡天文台台长,直到去世。.

新!!: 天体测量学和弗里德里希·威廉·贝塞尔 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 天体测量学和引力 · 查看更多 »

位置

位置可以指:.

新!!: 天体测量学和位置 · 查看更多 »

圭表

圭表是中国古代根据日影长度变化测定季节、划分四季和推算历法的工具。圭表由“圭”和“表”组成,表是一根垂直立于地面的杆或柱;圭是地面一根垂直于立杆或立柱的水平标尺,指向正北。正午,“表”的日影落在“圭”的刻度上,根据表影的长度可以测定节气,推算历法等。比如可以通过测量两次正午时(12点整)表影长度最长时刻(冬至点)的时间间隔(两个冬至点之间的时间间隔),确定一年的长度。通过测量正午表影长度确定冬至、夏至,进而推算回归年长度。.

新!!: 天体测量学和圭表 · 查看更多 »

地球自转

地球自轉是固體的地球繞著自己的軸轉動,方向是由西向東。從天球的北極點鳥瞰,地球自轉是逆時針旋轉;从南极点上空看是顺时针旋转。.

新!!: 天体测量学和地球自转 · 查看更多 »

分支

分支可以指:.

新!!: 天体测量学和分支 · 查看更多 »

喜帕恰斯

喜帕恰斯(ίππαρχος,Hipparkhos,),或译希帕求斯,古希腊的天文学家,有“方位天文学之父”之稱。 公元前134年,他繪製出包含1025颗恒星的星图,并创立星等的概念,亦发现了岁差现象。。喜帕恰斯也被認為是三角函數的創始者。.

新!!: 天体测量学和喜帕恰斯 · 查看更多 »

哥白尼原則

哥白尼原則是一種哲學的陳述:沒有一個觀測者有特別的位置。 這個項目可以用範式轉换來說明,從托勒密模型的天空,將地球放置在太陽系的中心,到尼古拉·哥白尼顯示天體的運動可以不用地球(或別的)在中心的幾何系統來解釋,所以他假設從一個特別的位置來觀測是可以轉化至別的位置來說明。 哲學家伊曼努爾·康德用"哥白尼迴轉輪"來闡述他的《當代認識論》中肯的思想方法的效應。他把知識主題的外在情況和品質歸咎於人的所有概念和經驗主義的經驗中心,并且克服了理性主義 - 經驗主義的僵局,成為17和18世紀的特色。 將哥白尼原則應用在宇宙論上,也就是認為宇宙在大尺度下是均質和各向同性的。這個原則不僅僅是一種哲學上的聲明,也是一種重大的認知:從均質和各向同性的觀點看,在統計上產生大規模的偏差是不可能的;這也就是承認在觀測上的發現,可以經由各種不同的觀測加以印證。 在實務上,天文學家在超星系團、星系纖維和空洞的尺度上觀測時,仍有不同的結構,但考慮到更大,在2億秒差距的尺度時,宇宙基本上是均質的。但是,當這是真實的,則宇宙在大尺度的時間上不是均質和各向同性的,因為它是從條件極端不同下的大霹靂演化過來的,並且將繼續往極端不同的情況發展下去,特別在暗能量的影響不斷提升下,明顯的朝向大冰凍或是大割裂發展。在非宇宙論時間尺度下的時間內宇宙是均質的,但是在基本粒子交互作用的時間尺度內不是各向同性的。在大尺度下各向異性的時間將導出最基本的近代物理的懸案。 2011年,中国科学院上海天文台研究员张鹏杰对哥白尼原理进行了检验,证实在径向尺度30亿光年以上哥白尼原則成立 。.

新!!: 天体测量学和哥白尼原則 · 查看更多 »

光行差

光行差(或称为天文光行差、恒星光行差)是指运动的观测者观察到光的方向与同一时间同一地点静止的观测者观察到的方向有偏差的现象。光行差现象在天文观测上表现得尤为明显。由于地球公转、自转等原因,地球上观察天体的位置时总是存在光行差,其大小与观测者的速度和天体方向与观测者运动方向之间的夹角有关,并且在不断变化。 光行差本质是由于光速有限以及光源与观察者存在相对运动造成的,类似于运动中的雨滴:下雨的时候,站在原地不动的人感觉到雨滴是从正上方落下的,而向前走的人感觉雨滴是从前方倾斜落下的,因此需要把伞微微向前倾斜。走得越快,需要倾斜得越厉害。光行差的成因与此相似,只不过不符合经典的速度叠加法则,而是需要考虑相对论效应带来的修正。 地球上的观测者与天体之间的相对运动可以分解为各种成分,分别对应下面几种相应的光行差:.

新!!: 天体测量学和光行差 · 查看更多 »

球面天文学

球面天文學也稱為位置天文學,是天文學的一個分支,用於確定在任何一個日期和時間由地球上的任意地點所看見的物體在天球上的位置。這是天文學最古老的分支之一,依靠數學的球面幾何學和測量的天體測量學為工具,可以回溯至上古。觀測天體並且持續紀錄,對宗教、守時和航海都是很重要的工作。在天文學上,精確的測量天體位置的科學稱為天體測量學。 球面天文學的主要元素是座標系統和時間。天體在天球上的位置最常使用赤道座標系統,是以地球赤道在天球上的投影為基礎建立的。天體在這個系統內的位置以赤經(α)和赤緯(δ)來標示。相對於地點和時間的位置則可以使用地平座標系統以高度和方位來表示。 在星表中臚列出來的星系和恆星的位置,都是在特定年份中的位置。由於歲差和章動的雙重影響,會使天體的位置隨著時間而改變,而這些與地球的運動有關的位置改變,都會在週期性的出版品上予以修正。 天體曆是確認太陽和行星位置使用的參考表,其中列出了這些天體在特定時間於天球上的位置,可以經由適當的轉換得到在其他座標中的位置。 人類以肉眼在最好的環境下約可見6,000顆恆星(全天計),但在任何時間都有一半是在地平線下看不見的。現代星圖中,人類把天球劃分成88個星座並有標準的星座邊界,每一顆恆星僅能歸屬於一個星座。星座在航海上非常有用,舉例如居於北半球,可利用北極星找到北方,因為它永遠位於天北極附近。.

新!!: 天体测量学和球面天文学 · 查看更多 »

球面幾何學

球面幾何學是在二維的球面表面上的幾何學,也是非欧几何的一個例子。 在平面几何 中,基本的觀念是點和線。在球面上,點的觀念和定義依舊不變,但線不再是“直線”,而是兩點之間最短的距離,稱為測地線。在球面上,最短線是大圓的弧,所以平面幾何中的線在球面幾何中被大圓所取代。同樣的,在球面幾何中的角被定義在兩個大圓之間。結果是球面三角學和平常的三角學有諸多不同之處。例如:球面三角形的內角和大於180°。 對比於通過一個點至少有兩條平行線,甚至無窮多條平行線的雙曲面幾何學,通過特定的點沒有平行線的球面幾何學是橢圓幾何學中最簡單的模式。 球面幾何學在航海學和天文學都有實際且重要的用途。 球面幾何學的重要關鍵在塑造真實投影平面,通過辨認在球面上獲得正相反的對蹠點(分列在邊的兩側相對的點)。在當地,投影平面具有球面幾何所有的特性,但有不同的總體特性,特別是他是無定向的。.

新!!: 天体测量学和球面幾何學 · 查看更多 »

科学

科學(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 天体测量学和科学 · 查看更多 »

第谷·布拉赫

谷·布拉赫(Tycho Brahe,),丹麥貴族,天文學家兼占星術士和煉金術士。他最著名的助手是克卜勒。.

新!!: 天体测量学和第谷·布拉赫 · 查看更多 »

类地行星

類地行星(terrestrial planet),又稱地球型行星(telluric planet)或岩石行星(rocky planet)都是指以硅酸鹽岩石為主要成分的行星。這個項目的英文字根源自拉丁文的「Terra」,意思就是地球或土地。由於大眾媒體的流行,加上對象是行星,因此在二合一下採用「類地」行星這個譯名。類地行星與氣體巨星有極大的不同,氣體巨星可能沒有固體的表面,而主要的成分是氫、氦和存在不同物理狀態下的水。 截至2013年11月4日,根據開普勒太空任務的數據,銀河系估計共有逾400億圍繞著類太陽恆星或紅矮星公轉,位於適居帶內,且接近地球大小的类地行星存在。其中約110億顆是圍繞著類太陽恆星公轉。而最近的一個距離地球12光年。.

新!!: 天体测量学和类地行星 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

新!!: 天体测量学和紫外线 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

新!!: 天体测量学和红外线 · 查看更多 »

無線電波源

宇宙射电源是在外太空散發強烈的無線電波的天體。無線電輻射來自熱氣體、在磁場中呈螺旋運動的電子和在太空中輻射出特定波長的原子和分子。无线电发射来自于各种来源。这些物体代表了宇宙中最极端的和充满能量的物理过程。.

新!!: 天体测量学和無線電波源 · 查看更多 »

類太陽恆星

類太陽恆星包括太陽型恆星、太陽相似體、孿生太陽等,是與太陽特別相似的那些恆星。這樣的分類是有階層性的,孿生是與太陽最接近的,其次是相似體,最後是太陽型。觀察這些恆星最重要的是能更好的理解太陽與其他恆星相關的各種性質,特別是恆星與行星的適居性。.

新!!: 天体测量学和類太陽恆星 · 查看更多 »

观测天文学

觀測天文學(Observational astronomy)是天文學的一個分支,常用於取得數據以與天文物理學的理論比對,或以測量所得的物理量解釋模型的涵義。在實務上,通過望遠鏡或其他天文儀器的使用來觀測目標。 做為一門科學,天文學有些困難之處,由於距離的遙遠,要直接驗證宇宙的特性是不可能的。然而,有為數眾多的恆星可以被觀察到,已經能夠讓天文學家獲取一些事實的真相。這些觀測到的資訊所繪製成的各種圖表,與紀錄足以顯示一般的趨向。變星就是很貼切的具體例證,能藉由變星的特性,測量出遙遠天體的距離。這一種類的距離指標,足以測量鄰近的距離,包括附近的星系,進而對其他現象進行測量。.

新!!: 天体测量学和观测天文学 · 查看更多 »

视差

視差是從兩個不同的點查看一個物體時,視位置的移動或差異,量度的大小位是這兩條線交角的角度或半角度。這個名詞是源自希臘文的παράλλαξις(parallaxis),意思是"改變"。從不同的位置觀察,越近的物體有著越大的視差,因此視差可以確定物體的距離。 从目标看两个点之间的夹角,叫做这两个点的视差角,两点之间的距离称作基线。 天文學家使用視差的原理測量天體的距离,包括月球、太陽、和在太陽系之外的恆星。例如,依巴谷衛星測量了超過100,000顆鄰近恆星的距離。這為天文學提供了測量宇宙距離尺度的階梯,是其它測距方法的基礎。在此處,"視差"這個名詞是兩條到恆星的視線交角的角度或半角度。 一些光學儀器,像是雙筒望遠鏡、顯微鏡、和雙鏡頭單眼反射相機,會以略為不同的角度觀看物體,都會受到視差的影響。許多動物的兩隻眼睛有著重疊的視野,可以利用視差獲得深度知覺;此一過程稱為立體視覺。這種效果在電腦視覺用於電腦立體視覺,並有一種裝置稱為視差測距儀,利用它來測量發現目標的距離,也可以改變為測量目標的高度。 一個簡單的,日常都能見到的視差例子是,汽車儀表板上"指針"顯示的速度計。當從正前方觀看時,顯示的正確數值可能是60;但從乘客的位置觀看,由於視角的不同,指針顯示的速度可能會略有不同。.

新!!: 天体测量学和视差 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: 天体测量学和视星等 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 天体测量学和超新星 · 查看更多 »

軌道

軌道可以指:.

新!!: 天体测量学和軌道 · 查看更多 »

运动

#重定向 体育运动.

新!!: 天体测量学和运动 · 查看更多 »

近地小行星

近地小行星(near-Earth asteroids,NEAs)指的是轨道与地球轨道相交的小行星。这类小行星可能会带来撞击地球的危险。同时,它们也是相对容易使用探测器进行探测的天体。事实上,访问一些近地小行星所需的推进剂比访问月球还少。NASA的會合-舒梅克號已经访问过爱神星,日本的隼鳥號也成功的登陸糸川,現已返航并帶回物質樣本。 目前已知的大小4千米的近地小行星已有数百个。可能还存在成千上万个直径大于1千米的近地小行星,数量估计超过2000个。 天文学家相信它们只能在轨道上存在一千万至一亿年。它们要么最终与内行星碰撞要么就是在接近行星时被弹出太阳系。该过程可能会消耗大量小行星,但似乎小行星来源仍然在不断补给。.

新!!: 天体测量学和近地小行星 · 查看更多 »

赤道仪

赤道儀是以一根平行於地球自轉軸旋轉的軸,就能追隨著天空(天球)旋轉的儀器裝置。這種類型的裝置常用於望遠鏡、衛星碟和相機。赤道儀的優勢在於它能夠允許聯接在其上的裝置只需要以固定的速率驅動一根軸就可以追蹤天空中以周日運動運行的任何天體。當做為衛星碟時,赤道儀的裝置允許只轉動一根軸就能同時指向好幾顆地球同步衛星。.

新!!: 天体测量学和赤道仪 · 查看更多 »

闰秒

閏秒是在協調世界時(UTC)中增加或減少一秒,使它與平太陽時貼近所做調整。UTC,是透過廣播作為民用時的官方時間基礎,它使用非常精確的原子鐘來維護。要保持UTC與平太陽時的一致性,偶爾需要調整,也就是"跳個"1秒來做調整,就是所謂添加閏秒(請參閱)。閏秒時間現在是由國際地球自轉和參考座標系統服務(IERS)來確認,而在1988年1月1日之前是由國際時間局(BIH)承擔這項職責。 當要增加正閏秒時,這一秒是增加在第二天的00:00:00之前,效果是延緩UTC第二天的開始。當天23:59:59的下一秒被記為23:59:60,然後才是第二天的00:00:00。如果是負閏秒的話,23:59:58的下一秒就是第二天的00:00:00了,但目前還沒有負閏秒調整的需求。需要時的日長度必須低於1750-1892年的平均日長度,才會累積足夠調整1秒所需要的時間。除了每天4毫秒的波動外,日長度自1700年以來都保持一樣。然而,從歷史上的日食觀測則顯示,自西元前700年以來,每個世紀的日長度大約增加1.7毫秒。.

新!!: 天体测量学和闰秒 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 天体测量学和银河系 · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

新!!: 天体测量学和X射线 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

新!!: 天体测量学和暗物质 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 天体测量学和恒星 · 查看更多 »

恆星動力學

恆星動力學是天文物理的一個分支,以統計學的方法介紹恆星在它們共同重力下的集體運動。但重力的長距離效應和恆星系統緩慢的弛豫,阻礙了統計物理方法的使用。一顆恆星在星系或球狀星團內的運動,主要受到其它恆星的平均分布和恆星距離的影響,和最鄰近的恆星少量的影響。 如果物質的分布是理想化的平滑,恆星的弛豫過程是傾向於每顆恆星有著各別的運動軌跡的。2-體弛豫被限制在一顆恆星和另一顆恆星之間的交互作用下,而"劇變弛豫"是大型恆星集團系統集體變異所造成的。 Category:天體力學 動力學.

新!!: 天体测量学和恆星動力學 · 查看更多 »

業餘天文學

業餘天文學,是對觀察天體有興趣且樂在其中的人所從事的行為。也就是通常意義上的天文愛好者所從事的夜空或白天觀測目標或攝影活動,通常使用可移動式望遠鏡、雙筒望遠鏡和肉眼進行觀察。 一些天文愛好者常進行大型的集體觀星活動(連續數天),借此互相觀摩經驗和聚會,使用望遠鏡心得等;這樣的集體活動被稱爲交流會(star party),尤以美、日較流行,中國亦已興起此活動。.

新!!: 天体测量学和業餘天文學 · 查看更多 »

氣體巨星

#重定向 氣態巨行星.

新!!: 天体测量学和氣體巨星 · 查看更多 »

測量

測量學,是一門以地球形狀、大小以及地表上各物體的幾何形狀與空間位置為研究對象的學科。其利用適當方法和儀器對空間中的物體進行搜集、分析、加值、整合、管......等方法,讓人理解其空間上的關係,以利規劃與利用。 测量在中国大陆、臺湾、日本等地区一般指「测绘」;在香港延续英国的测量师业务,含义扩大,测量师大致可以分為以下分支:.

新!!: 天体测量学和測量 · 查看更多 »

準確與精密

準確度(accuracy)與精密度(英语:precision)是科學、工程學、工業及統計學等範疇的重要概念。 準確度是每一次獨立的測量之間,其平均值與已知的數據真值之間的差距(與理論值相符合的程度)。例如:多次實驗結果其平均值接近於已知的數據真值(理論值),可知道數據「準確」,或是數據具有「高準確度」;反之,平均值與已知的數據真值差距較大,表示實驗數據不準確,或準確度不高。 精密則是當實驗數據很精準時,會要求實驗有高度的再現性,表示實驗數據是可信的,也就是實驗數據需要具有高精密度(多次量度或計算的結果的一致程度)。 一個結果必須要同時符合準確與精密這兩個條件,才可算是精準。 常見文獻以射擊彈着點分佈情形來說明準確度與精密度的意義,如圖示,初看似乎簡明易懂,實際仍隱含認知的盲點。以射擊而言每一彈着點均儘量接近靶心才稱得上精確或是精準;最左邊圖示就一般射擊而言屬於高準確度高精密度。如果是期望求得彈道與瞄準機制間的關係、以槍枝調校為目的的射擊,其本質與一般真值未知的測量或實驗相同,图1因為彈着點分佈其平均值接近靶心,依準確度的定義則屬於高準確度低精密度。 日益受到重視的國際標準組織ISO發表一份標準文件ISO5725,其名稱為“Accuracy (trueness and precision) of measurement methods and results”(量測方法與成果之準確度(真實度與精密度)),其內涵最大的改變是趨向從俗的定義accuracy為一般用語(the general term),即一般用來描述量測、實驗整體成果的「精準」度一詞,或者簡稱為「精度」。其間差異主要在於ISO5725使用「真實度」(trueness)替代原本的準確度(accuracy)。 「精度」為真實度與精密度的組合,包含受到偶然與系統兩部分誤差的影響,實務上,以被認可的參考值視為真值。.

新!!: 天体测量学和準確與精密 · 查看更多 »

星座

弗雷德里克·德·威特在1670年绘制的星座图 星座是指天上一群群的恒星组合。自从古代以来,人类便把三五成群的恒星与他们神话中的人物或器具联系起来,称之为“星座”。星座几乎是所有文明中确定天空方位的手段,在航海领域应用颇广。对星座的划分完全是人为的,不同的文明对于其划分和命名都不尽相同。星座一直没有统一规定的精确边界,直到1930年,國際天文學聯合會为了统一繁杂的星座划分,用精確的邊界把天空分為八十八個正式的星座,使天空多数恆星都屬於某一特定星座。這些正式的星座大多都以中世紀傳下來的古希臘傳統星座為基礎。与此相对地,有一些广泛流传但是沒有被认可为正式星座的星星的组合叫做星群,例如北斗七星(参见恒星统称列表)。 在三維的宇宙中,這些恆星其實相互間不一定有實際的關係,不過其在天球這一個球殼面上的位置相近,而其实它们之间可能相距很远。如果我们身处银河中另一太阳系,我们看到的星空将会完全不同。自古以來,人们对于恆星的排列和形狀很感興趣,並很自然地把一些位置相近的星聯繫起來組成星座。.

新!!: 天体测量学和星座 · 查看更多 »

星系

星系(galaxy),或譯為銀河,源自於希臘语的「γαλαξίας」(galaxias)。廣義上星系指無數的恆星系(當然包括恆星的自體)、塵埃(如星雲)組成的運行系統。參考我們的銀河系,是一個包含恆星、星團、星雲、氣體的星際物質、宇宙塵和暗物質,並且受到重力束縛的大質量系統,通常距離都在幾百萬光年以上。星系平均有數百億顆恆星,是構成宇宙的基本單位。。典型的星系,從只有數千萬(107)顆恆星的矮星系到上兆(1012)顆恆星的橢圓星系都有,全都環繞著質量中心運轉。除了單獨的恆星和稀薄的星際物質之外,大部分的星系都有數量龐大的多星系統、星團以及各種不同的星雲。 歷史上,星系是依據它們的形状分類的(通常指它們視覺上的形狀)。最普通的是橢圓星系,有橢圓形狀的明亮外觀;螺旋星系是圓盤的形狀,加上彎曲的塵埃旋渦臂;形狀不規則或異常的,通常都是受到鄰近其他星系影響的結果。鄰近星系間的交互作用,也許會導致星系的合併,或是造成恆星大量的產生,成為所謂的星爆星系。缺乏有條理結構的小星系則會被稱為不規則星系。 在可以看見的可觀測宇宙中,星系的總數可能超過一千億(1011)個以上。大部分的星系直徑介於1,000至100,000秒差距,彼此間相距的距離則是百萬秒差距的數量級。星系際空間(存在於星系之間的空間)充滿了極稀薄的電漿,平均密度小於每立方公尺一個原子。多數的星系會組織成更大的集團,成為星系群或團,它們又會聚集成更大的超星系團。這些更大的集團通常被稱為薄片或纖維,圍繞在宇宙中巨大的空洞週圍。 雖然我們對暗物質的了解很少,但在大部分的星系中它都佔有大約90%的質量。觀測的資料顯示超大質量黑洞存在於星系的核心,即使不是全部,也佔了絕大多數,它們被認為是造成一些星系有著活躍的核心的主因。銀河系,我們的地球和太陽系所在的星系,看起來在核心中至少也隱藏著一個這樣的物體。.

新!!: 天体测量学和星系 · 查看更多 »

星系天文學

星系天文學是天文學的一個分支,研究的對象是我們的銀河系以外的星系(研究所有不屬於銀河系天文學的天體),又稱河外天文學。 當工作的儀器獲得改善,就可以更詳細的研究現在只能審視的遙遠天體,因此這個分支可以再細分為更有效的近銀河系外天文學和遠銀河系外天文學。前者的成員與對象包括星系、本星系群,距離近得可以詳細研究內部的超新星遗迹、星協。後者遠得只是可以測量的對象和只有最明亮的部份可以描述或研究。 一些相關的主題如下:.

新!!: 天体测量学和星系天文學 · 查看更多 »

星盘

星盘(Astrolabe,ἁστρολάβον astrolabon 'star-taker') 是古代天文学家,占星师和航海家用来进行天文测量的一项重要的天文仪器,用途非常广泛,包括定位和预测太阳、月亮、金星、火星相关天体在宇宙中的位置,确定本地时间和经纬度,三角测距等。.

新!!: 天体测量学和星盘 · 查看更多 »

星際爭霸戰

《星际旅行:初代》(Star Trek)是一部在文化上有重大意義的科幻電視影集,由吉恩·羅登貝瑞(Gene Roddenberry)於1960年代所創造。它有廣大的愛好者,《電視指南》(TV Guide)將它評為「史上25大人文劇集」的第一名,之後更陸續製播了5部衍生電視影集以及12部院線電影。吉尼斯世界紀錄大全更將它列入有最多衍生作品的項目。 為了跟其他續篇有所區分,西方一般都稱呼它為Star Trek: The Original Series(星际旅行:原初系列),縮寫為ST:TOS或是TOS。請參考星艦奇航記以查看更一般性的概述。 故事的設定是發生在有着烏托邦背景的23世紀,《星際爭霸戰》的故事是敘述星艦「企業號」以及它的航員的歷險過程。每一集開頭的旁白說明了他們的目標: 《星際爭霸戰》最初於1966年9月8日星期三於全國廣播公司(NBC)播映。一開始它並不是太成功,收視率很低而且廣告收入不佳。然而,當劇集腰斬的威脅在第2季隱隱約約地浮現之後,死忠的影迷們發起了一項前所未有的運動,懇請NBC繼續製播這部影集。影迷們成功地讓NBC同意製播第3季,但是影集的時段卻換到了星期五晚上這個「黃昏時段」。在第3季結束之後,影集還是下檔了。最後一集於1969年6月3日首播。 之後影集的重播權出售,電視台在他們認為可以吸引影迷及潛在影迷來收看的時段重播它。不久,許多影迷加入了當初發起這個讓《星際爭霸戰》大受歡迎的運動的影迷的行列,一起為這個連鎖事業建立了一個廣大的市場。前6部《星艦奇航記》的電影是以《星際爭霸戰》為基礎,並且第7部電影也有一些舊角色參與。 原始《星際爭霸戰》的影迷們在西方普遍被叫做,不過部分影迷偏好使用Trekker這個稱呼。.

新!!: 天体测量学和星際爭霸戰 · 查看更多 »

星表

星表是天文學上的目錄。在天文學中,許多恆星都只有在星表中有簡單的編號;而為了許多不同的目的,有許多巨大的星表在費時多年後才編輯完成,但其中僅有少數的會經常被引用到。許多近年編輯完成的星表是使用電子格式編輯完成,可以直接由美国国家航空航天局天文資料中心或其他網站上免費下載。(參見文末的連結。) 隨著人們發明強大的新型望遠鏡,看到的星星也越來越多,可見星星的數量數以億計,因此現階段根本不可能把數百億顆恆星收錄在單一星表中,而使用不同性質的星表來分類。常用的星表有:HD/HDE,SAO,,AC,,ADS,BS,BSC,HR,GJ,Gliese,Gl,GCTP,HIP。.

新!!: 天体测量学和星表 · 查看更多 »

星曆表

星曆表,簡稱曆表,源自希臘文ἐφήμερος(ephemeros),刊載一個或多個天體每天特定時刻位置的數據表列,通常還附帶其他補充材料;而天文年曆也是星曆表的一種。 星曆表最早源於Johannes Stadius在1554年出版的「auctae新星曆表」,該星曆表列出行星位置,但未完全正確。例如在Stadius星曆表中水星位置就有10度以上的週期性誤差。 表中列出每天在特定時刻(正午或子夜)的太陽系天體的視位置(直角座標系統的地平高度、赤道座標系的赤經與赤緯、黃道座標系的黃經與黃緯等)用於高精度測量的星曆表更會列出較亮恆星的位置,因計算之恆星以上萬計,所編成的星曆表亦相當厚。 星曆表至少可以推導過去與未來數個世紀的天體位置。雖然天體力學計算的精度已很高,對不久的未來的位置可依賴計算得知。但長遠而言仍有不確定的因素,例如為數眾多質量仍未知的小行星所造成的攝動是不能被忽略。星曆表最常用在天體測量時校對天體的特殊位置,地球上這種差異極小,很多時候不會被注意到,但對於測量接近地球的小行星或是精確校正月球位置時,此時差異就變得很重要,因為這可能意味著一些外在因素使其有這樣的變化出現或者是檢定儀器或人為方面的誤差等。 現在更有用於電腦上,可動態演示位置的天文軟件出現,能列出天上幾乎任何天體,行星和其衛星的動態位置,如果有需要還可列出彗星或小行星,通常只需幾個點擊就可列出,十分方便;星曆表為太空船的太空探測、以及地面望遠鏡對恆星和星系的觀測與定位提供重要資訊。.

新!!: 天体测量学和星曆表 · 查看更多 »

方位

方位是各方向的位置。四方位或基本方位就是東南西北.

新!!: 天体测量学和方位 · 查看更多 »

方位天文學

方位天文學是研究天體位置和運動的學問,是天文學最古老的分支之一,可以追溯到上古的時代。天體位置的觀察對宗教和占星術都非常重要,並且可以作為計時的依據。透過天體測量學可以精確測量天體在天空中的位置。 人類以肉眼在最好的環境下約可見6,000顆恆星(全天計),但在任何時間都有一半是在地平線下看不見的。現代星圖中,人類把天球劃分成88個星座並有標準的星座邊界,每一顆恆星僅能歸屬於一個星座。星座的升落與天極在航海天文上非常有用,舉例如居於北半球,可利用北極星找到北方,因為他永遠位於北天極附近。.

新!!: 天体测量学和方位天文學 · 查看更多 »

日晷

日晷是一種由視太陽位置告知每天時間的裝置。狹義而言,它包含一個平面(盤面)和將影子投影在平面上以指示時間的晷影器(gnomon)組成。當太陽移動著劃過天際,陰影邊緣會與不同的時間線對齊,顯示出當時的時刻。晷針(style)就是在晷影器上指示時間的邊緣線;經由晷針上的節點(如果有),還可以提示日期。晷影器可以產生明顯的陰影,以讓晷針可以顯示時間。晷影器可以是一根棍棒、金屬線、或精心裝飾的雕飾。晷針必須平行於地球的自轉軸,才能整年都提供正確的時間。晷針與地平面的夾角就是其所在位置的地理緯度。 廣義而言,日晷是使用太陽的高度或方位(或兩者一起)以顯示時間的任何設備。除了提供時間的功能外,日晷也常被當成裝置藝術的一部分、文學上的隱喻和數學上學習的物件。 一般常見廉價的裝飾日晷是大批量產的,所以晷針的角度與時角是不正確的,也就不能提供正確的時間。.

新!!: 天体测量学和日晷 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 天体测量学和时间 · 查看更多 »

感光耦合元件

电荷耦合器件(Charge-coupled Device,縮寫:CCD),是一種集成電路,上有許多排列整齊的電容,能感應光線,並將影像轉變成數字信号。經由外部電路的控制,每個小電容能將其所帶的電荷轉給它相鄰的電容。CCD廣泛應用在數位攝影、天文學,尤其是光學遙測技術(photometry)、光學與頻譜望遠鏡,和高速攝影技術如幸運成像。.

新!!: 天体测量学和感光耦合元件 · 查看更多 »

重定向到这里:

天体测量天文测量天文测量学天體測量天體測量學

传出传入
嘿!我们在Facebook上吧! »