徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

埃倫費斯特定理

指数 埃倫費斯特定理

在量子力學裏,埃倫費斯特定理(Ehrenfest theorem)表明,量子算符的期望值對於時間的導數,跟這量子算符與哈密頓算符的對易算符,兩者之間的關係,以方程式表達為 其中,A 是某個量子算符,\langle A\rangle 是它的期望值,H 是哈密頓算符,t 是時間,\hbar 是約化普朗克常數。 埃倫費斯特定理是因物理學家保羅·埃倫費斯特命名。在量子力學的海森堡繪景裏,埃倫費斯特定理非常顯而易見;取海森堡方程式的期望值,就可以得到埃倫費斯特定理。埃倫費斯特定理與哈密頓力學的劉維定理密切相關;劉維定理使用的泊松括號,對應於埃倫費斯特定理的對易算符。實際上,從根據經驗法則,將對易算符換為泊松括號乘以 i\hbar ,再取 i\hbar 趨向於 0 的極限,含有對易算符的量子定理就可以改變為含有泊松括號的經典定理。.

21 关系: 动量定律對易算符保守力刘维尔定理 (哈密顿力学)哈密頓算符哈密顿力学動量算符算符純量勢经典力学隐函数质量薛定谔方程量子力学量子態自伴算子泊松括號期望值海森堡繪景时间

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 埃倫費斯特定理和动量 · 查看更多 »

定律

定律,或稱科學定律(Scientific law或Laws of science)、科學法則法則有時也為定則(Rule)的翻譯。,為研究宇宙間不變的事實規律所歸納出的結論,不同於理論、假設、定義、定理,是對客觀事實的一種表達形式,通過大量具體的客觀事實經驗累積歸納而成的結論。.

新!!: 埃倫費斯特定理和定律 · 查看更多 »

對易算符

#重定向 交換子.

新!!: 埃倫費斯特定理和對易算符 · 查看更多 »

保守力

假设一感受着某作用力的粒子,從初始位置移動到終結位置,而此作用力所做的功跟移動路徑無關,則稱此力為保守力(conservative force),又稱為守恆力。等價地說,假設一個粒子從某位置,移動經過一條閉合路徑後,又回到原本位置,則作用於這粒子的保守力所做的機械功(保守力對於整個閉合路徑的積分)等於零。假設在一個物理系統裏,所有的作用力都是保守力,則稱此物理系統為「保守系統」,又稱為「守恆系統」。對於這種系統,在空間裏每一個位置,都可以給定位勢一個唯一數值。假設粒子從某位置移動至另一位置,則由於保守力的作用,粒子的勢能可能會有所改變,但前後差值與移動經過的路徑無關。例如,重力是一種保守力,而摩擦力是一種非保守力。.

新!!: 埃倫費斯特定理和保守力 · 查看更多 »

刘维尔定理 (哈密顿力学)

在物理学中,刘维尔定理(Liouville's theorem)是经典统计力学与哈密顿力学中的关键定理。该定理断言相空间的分布函数沿着系统的轨迹是常数——即给定一个系统点,在相空间游历过程中,该点邻近的系统点的密度关于时间是常数。 它以法国数学家约瑟夫·刘维尔命名。这也是辛拓扑与遍历论中的有关数学结果。.

新!!: 埃倫費斯特定理和刘维尔定理 (哈密顿力学) · 查看更多 »

哈密頓算符

#重定向 哈密顿算符.

新!!: 埃倫費斯特定理和哈密頓算符 · 查看更多 »

哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.

新!!: 埃倫費斯特定理和哈密顿力学 · 查看更多 »

動量算符

在量子力學裏,動量算符(momentum operator)是一種算符,可以用來計算一個或多個粒子的動量。對於一個不帶電荷、沒有自旋的粒子,作用於波函數 \psi(x)\,\! 的動量算符可以寫為 其中,\hat\,\! 是動量算符,\hbar\,\! 是約化普朗克常數,i\,\! 是虛數單位,x\,\! 是位置。 給予一個粒子的波函數 \psi(x)\,\! ,這粒子的動量期望值為 其中,p\,\! 是動量。.

新!!: 埃倫費斯特定理和動量算符 · 查看更多 »

算符

在物理學裏,算符(operator),又稱算子,作用於物理系統的狀態空間,使得物理系統從某種狀態變換為另外一種狀態。這變換可能相當複雜,需要用很多方程式來表明,假若能夠使用算符來代表,可以更為簡單扼要地表達論述。 對於很多案例,假若作用的對象有所迥異,算符的物理行為也會不同;但是,對於有些案例,算符的物理行為具有一般性,這時,就可以將論題抽象化,專注於研究算符的物理行為,不必顧慮到狀態的獨特性。這方法比較適用於一些像對稱性或守恆定律的論題。因此,在經典力學裏,算符是很有用的工具。在量子力學裏,算符為理論表述不可或缺的要素。 對於更深奧的理論研究,可能會遇到很艱難的數學問題,算符理論(operator theory)能夠提供高功能的架構,使得數學推導更為簡潔精緻、易讀易懂,更能展現出內中物理涵意。 一般而言,在經典力學裏的算符大多作用於函數,這些函數的參數為各種各樣的物理量,算符將某函數映射為另一種函數。這種算符稱為「函數算符」。在量子力學裏的算符稱為「量子算符」,作用的對象是量子態。量子算符將某量子態映射為另一種量子態。.

新!!: 埃倫費斯特定理和算符 · 查看更多 »

純量勢

純量勢或稱純量位,在向量分析與物理學中是一個基本概念(形容詞「純量」常被省略,只要不會與向量勢發生混淆)。給定一向量場F,其純量勢V為一純量場;對此純量場取負值梯度則得到F: 相反過來,給定一函數V,這個式子定義了一個向量場F,其純量勢為V。純量勢也常常標記為希臘字母Φ,比如在電動力學的場合。 純量勢的物理意義和場的類型有關。對一流體或氣體流的向量場,定義純量勢暗示了任一點的流向與該點純量勢的最陡降方向相同,而對於力場,在一點的加速度也是一樣的情況。力場的純量勢跟力場的勢能(或稱位能)密切相關。 不是每個向量場都有一純量勢;有純量勢的向量場稱作是保守向量場,相應於物理學中保守力的稱呼。在各種速度場中,任何的層狀場(lamellar field)皆有一純量勢,而一螺線向量場可有純量勢的情況只發生在拉普拉斯場(Laplacian field)。 C C Category:场论 fr:Champ de vecteurs#Champ de gradient.

新!!: 埃倫費斯特定理和純量勢 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 埃倫費斯特定理和经典力学 · 查看更多 »

隐函数

在數學中,隱式方程(implicit equation)是形同f(x_1,x_2,\cdots,x_n).

新!!: 埃倫費斯特定理和隐函数 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 埃倫費斯特定理和质量 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 埃倫費斯特定理和薛定谔方程 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 埃倫費斯特定理和量子力学 · 查看更多 »

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

新!!: 埃倫費斯特定理和量子態 · 查看更多 »

自伴算子

在數學裏,作用於一個有限維的酉空間,一個自伴算子(self-adjoint operator)等於自己的伴隨算子;等價地說,在一组单位酉正交基下,表達自伴算子的矩陣是埃爾米特矩陣。埃爾米特矩陣等於自己的共軛轉置。根據有限維的譜定理,必定存在著一個正交歸一基,可以表達自伴算子為一個實值的對角矩陣。.

新!!: 埃倫費斯特定理和自伴算子 · 查看更多 »

泊松括號

在數學及经典力學中,泊松括號是哈密顿力學中重要的運算,在哈密頓表述的動力系統中時間演化的定義起着中心角色。在更一般的情形,泊松括号用来定义一个泊松代数,而泊松流形是一个特例。它们都是以西莫恩·德尼·泊松命名的。.

新!!: 埃倫費斯特定理和泊松括號 · 查看更多 »

期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

新!!: 埃倫費斯特定理和期望值 · 查看更多 »

海森堡繪景

海森堡繪景(Heisenberg picture)是量子力學的一種表述,因物理學者维尔纳·海森堡而命名。在海森堡繪景裏,對應於可觀察量的算符會隨著時間流易而演化,而描述量子系統的態向量則與時間無關。使用海森堡繪景,可以很容易地觀察到量子系統與經典系統之間的動力學關係。海森堡繪景適用於量子場論。海森堡繪景表述的是薛丁格波動力學,不是海森堡矩陣力學。 海森堡繪景與薛丁格繪景、狄拉克繪景不同。在薛丁格繪景裏,描述量子系統的態向量隨著時間流易而演化,而像位置、動量一類的對應於可觀察量的算符則不會隨著時間流易而演化。在狄拉克繪景裏,態向量與對應於可觀察量的算符都會隨著時間流易而演化。 這三種繪景殊途同歸,所獲得的結果完全一致。這是必然的,因為它們都是在表達同樣的物理現象。.

新!!: 埃倫費斯特定理和海森堡繪景 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 埃倫費斯特定理和时间 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »