徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

三磷酸腺苷

指数 三磷酸腺苷

三磷酸腺苷(adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化學中是一种核苷酸,作为細胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。它也是RNA序列中的鳥嘌呤二核苷酸,在DNA進行轉錄或複製時可做為替補。.

49 关系: ATP酶危害分析重要管制點受体发酵吉布斯能三磷酸鸟苷三磷酸腺苷合酶三羧酸循环丙酮酸乳酸乙酰辅酶A二磷酸腺苷心律調節器化学平衡化学式化學能分子分子量單磷酸腺苷光合作用环磷腺苷灌溉硫酯磷酸線粒體纳米技术细胞细胞质基质缓冲溶液真核生物生物化学电池焦磷酸盐莫耳能量葡萄糖键能脂肪酸腺苷通貨Protein Data Bank核酸核苷酸氢键氧化磷酸化水解激酶摩尔浓度

功(work),也叫机械功,是物理学中表示力对位移的累积的物理量,指从一种物理系统到另一种物理系统的能量转变,尤其是指通过使物体朝向力的方向移动的力的作用下能量的转移。与机械能相似的是,功也是标量,国际单位制单位为焦耳。 “功”一词最初是法国数学家贾斯帕-古斯塔夫·科里奥利创造的。 由动能定理,若一个外力作用于一物体使之动能从Ek0增至Ek,那么,此力所作的机械功为: 其中m是物体的质量,v是物体的速度。 机械功就是力与位移的內積: 若力与位移的夹角小于直角,则机械功为正,亦称为力作正功。若力与位移的夹角大于直角,则机械功为负,或力作负功,或物体克服力作功。 若力的方向与位移方向垂直,则此力不作功: 舉例來說:一個10牛頓(F.

新!!: 三磷酸腺苷和功 · 查看更多 »

ATP酶

ATP酶,又称为三磷酸腺苷酶,是一类能将三磷酸腺苷(ATP)催化水解为二磷酸腺苷(ADP)和磷酸根离子的酶,这是一个释放能量的反应。在大多数情况下,能量可以通过传递而被用于驱动另一个需要能量的化学反应。这一过程被所有已知的生命形式广泛利用。 部分ATP酶是内在膜蛋白(Integral membrane protein),可以锚定在生物膜上,并可以在膜上移动;这些ATP酶又被称为跨膜ATP酶。.

新!!: 三磷酸腺苷和ATP酶 · 查看更多 »

危害分析重要管制點

危害分析重要管制點(Hazard Analysis and Critical Control Points,簡稱:HACCP)是一種以科學為依據,旨在保證加工系統流程的食品安全。該系統的重點是以預防的角度來生產最低危害風險的產品以供人類使用。此一概念是構成美國豬肉產品安全生產預防系統的基本機構,藉由此系統對自然出現在食品中、來自環境及未遵守生產程序而潛在食品安全危害都藉由先期措施降低風險。 1971年任職於美國Pillsobury公司的H.

新!!: 三磷酸腺苷和危害分析重要管制點 · 查看更多 »

受体

受體可以是指:.

新!!: 三磷酸腺苷和受体 · 查看更多 »

发酵

发酵作用(fermentation)有时也寫作醱酵,其定义由使用场合的不同而不同。通常所说的发酵,多是指生物体对于有机物的某种分解过程。发酵是人类较早接触的一种生物化学反应,如今在食品工业、生物和化学工业中均有广泛应用。其也是生物工程的基本过程,即发酵工程。对于其机理以及过程控制的研究,还在继续。.

新!!: 三磷酸腺苷和发酵 · 查看更多 »

吉布斯能

約西亞·吉布斯 在热力学裏,吉布斯能(Gibbs能),又称吉布斯自由能、吉布斯函数、自由焓,常用英文字母「G」標記。吉布斯能是國際化學聯會建議採用的名稱。吉布斯能是描述系統的熱力性質的一種熱力勢,定義為 其中,U是系统的内能,T是絕對温度,S是熵,p是压强,V是体积,H是焓。 假設在等温等压狀況下,一個熱力系統從良好定義初態變換到良好定義終態,則其吉布斯能減少量必定大於或等於其所做的非體積功;假若這變換是可逆過程,則其吉布斯能減少量等於其所做的非體積功。所以,這熱力系統所能做的最大非體積功是其吉布斯減少量。 在等溫等壓狀況下,一個熱力過程具有的必需條件為,吉布斯能隨著過程的演化而減小。這意味著,平衡系統的吉布斯能是最小值;在平衡點,吉布斯能對於其它自變量的導數為零。 吉布斯能可以用來評估一個反應是否具有自發性,它可以用來估算一個熱力系統可以做出多少非體積功。當應用熱力學於化學領域時,吉布斯能是最常用到與最有用的物理量之一。吉布斯能是為紀念美國物理學者約西亞·吉布斯而命名。J.W. Gibbs, "A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces," Transactions of the Connecticut Academy of Arts and Sciences 2, Dec.

新!!: 三磷酸腺苷和吉布斯能 · 查看更多 »

三磷酸鸟苷

鳥苷-5'-三磷酸,(縮寫GTP),係一類嘌呤類核苷三磷酸。它可以在DNA複製期間的DNA轉錄過程中作爲RNA生物合成的底物。它的結構與含氮鹼基鳥嘌呤相似,唯一的不同是GTP連有一個核糖基團以及三個磷酸基團,其中,鳥嘌呤與核糖基團的1位碳相連,磷酸基團與核糖基團的5位碳相連。 另外,GTP還能在生物體代謝過程中作能量源或底物活化劑,這一點和ATP(三磷酸腺苷)相似,不過,它的專一性較強。GTP在蛋白質生物合成以及糖質新生過程中作能量源。 GTP在信號轉導過程中起不可或缺的作用,特別是和G蛋白作用時以及在第二信使機制中,在的催化作用下,GTP會轉化爲GDP(二磷酸鳥苷)。.

新!!: 三磷酸腺苷和三磷酸鸟苷 · 查看更多 »

三磷酸腺苷合酶

三磷酸腺苷合酶或ATP合酶,三磷酸腺苷酶(ATPase)的一种,在这里并特指F类的FoF1ATP合酶(F Type FoF1 ATP Synthase)。它利用呼吸链产生的质子的电化学势能,通过改变蛋白质的结构来进行三磷酸腺苷(ATP)的合成。ATP是大多数生物体中细胞最常用的“能量通货”。 它由二磷酸腺苷(ADP)和无机磷酸盐(Pi)形成。 ATP合酶催化的总体反应为:.

新!!: 三磷酸腺苷和三磷酸腺苷合酶 · 查看更多 »

三羧酸循环

三羧酸循環(tricarboxylic acid cycle) ,亦作檸檬酸循環(citric cycle),是有氧呼吸的第二階段。該循環以循環中一個重要中間體檸檬酸命名,又因爲檸檬酸是一種,該反應又稱爲三羧酸循環。該循環亦因由德國生物化學家克雷布斯(Krebs)發現而稱爲克雷布斯循環(Krebs cycle),克雷布斯亦因此項貢獻獲1953年諾貝爾生理學或醫學獎。丙酮酸在經過丙酮酸脫氫酶系氧化,生成乙酰輔酶A(acetyl-CoA)後,與四碳二元羧酸草酰乙酸化合,生成檸檬酸,進入檸檬酸循環。隨後,經過一系列反應,兩個碳原子轉化爲二氧化碳(CO2)分子,檸檬酸中蘊藏的化學能轉化至還原的輔酶中。檸檬酸循環的終產物仍然是草酰乙酸,這使得該循環能源源不斷地氧化輸入循環的乙酰輔酶A。 一般情況下,檸檬酸循環產生的還原輔酶會連同糖酵解過程產生的還原輔酶一同,在氧化磷酸化過程中氧化,生成大量的ATP。一分子的乙酰輔酶A在被檸檬酸循環代謝後,可產生兩分子的CO2分子、三分子NADH、一分子FADH2,以及一分子GTP。 檸檬酸循環可以代謝糖類、脂質,以及大部分氨基酸,因爲這三類物質都能轉換爲乙酰輔酶A或檸檬酸循環的中間體,從而進入檸檬酸循環之中。另外,檸檬酸循環的許多中間體可供生物體利用。當中間產物不足時,可通過添補反應對中間產物進行補充。生物體最重要的填補反應是在丙酮酸羧化酶催化下,以一分子丙酮酸和一分子二氧化碳分子爲原料,合成一分子草酰乙酸的反應。 檸檬酸循環發生於線粒體基質中,但也會部分地在線粒體內膜或嵴膜上發生。.

新!!: 三磷酸腺苷和三羧酸循环 · 查看更多 »

丙酮酸

丙酮酸(pyruvic acid,化學式:CH3COCOOH)是一種α-酮酸,其燃点为82 °C,在生物化學代謝途徑中扮演重要角色。丙酮酸的羧酸鹽陰離子(carboxylate anion)被稱之為丙酮酸鹽(pyruvate,這個字在中文裡也經常簡單地稱作丙酮酸)。.

新!!: 三磷酸腺苷和丙酮酸 · 查看更多 »

乳酸

乳酸(IUPAC學名:2-羥基丙酸)是一种化合物,它在多种生物化学过程中起作用。它是一种羧酸,分子式是C3H6O3。它是一个含有羟基的羧酸,因此是一个α-羟酸(AHA)。在水溶液中它的羧基释放出一个质子,而产生乳酸根离子CH3CHOHCOO−。 乳酸有手性,有两个旋光异构体。一个被称为L-(+)-乳酸或(S)-乳酸,另一个被称为D-(-)-乳酸或(R)-乳酸。L-(+)-是在生物学上重要的异构体。.

新!!: 三磷酸腺苷和乳酸 · 查看更多 »

乙酰辅酶A

乙酰辅酶A(acetyl-CoA)是活化了的乙酸,由乙酰基(CH3CO-)与辅酶A的巯基以高能的硫酯键相连。乙醯輔酶A是脂肪酸的β-氧化及糖酵解后产生的丙酮酸脱羧後的产物。 在三羧酸循环的第一步,乙酰基转移到草酰乙酸中,生成柠檬酸,--。.

新!!: 三磷酸腺苷和乙酰辅酶A · 查看更多 »

二磷酸腺苷

二磷酸腺苷(adenosine diphosphate,縮寫:ADP)是一種核苷酸。它是在代謝中重要的有機化合物,並是在活細胞中的能量流動是至關重要的。一個ADP分子包括三個重要的結構組件:一個糖骨架連接到一個腺嘌呤分子和鍵合到核糖的5'碳原子上的兩個磷酸盐(phosphate)基團的分子。.

新!!: 三磷酸腺苷和二磷酸腺苷 · 查看更多 »

心律調節器

心律調節器(Pacemaker、Artificial pacemaker),又稱心臟節律器,是一種醫療器材,使用電擊對於心臟的肌肉做持續與規律的刺激,以維持心臟的持續跳動。.

新!!: 三磷酸腺苷和心律調節器 · 查看更多 »

化学平衡

化学平衡(Chemical equilibrium)是指在宏观条件一定的可逆反应中,化学反应正逆反应速率相等,反应物和生成物各组分浓度不再改变的状态。可用ΔrGm.

新!!: 三磷酸腺苷和化学平衡 · 查看更多 »

化学式

化學式(chemische Formel/chemical formula),是一種用來表示化學物質(也可能為元素或化合物)組成的式子。 一般情況下,由元素符號、數字或其他符號組成;這些符號單一行列,被限制在一個排版,並會出現上標和下標。 下為常用符號:.

新!!: 三磷酸腺苷和化学式 · 查看更多 »

化學能

化學能是內能的一種,指一些需要經由化學反應釋放出來的能量。例如煤的能量是由燃燒(與氧反應)釋放出來的,貯存於煤裏面的能量即稱為化學能。電池裡的化學物質,是藉著化學變化而產生電能。 生物裡呼吸作用、光合作用產生之能量,也是化學能。 由於化學能是化學反應時產生的,因此是一種隱蔽的能量,不能直接用來做功,只有在发生化学变化时,才释放出来,变成热能或者其他形式的能量。.

新!!: 三磷酸腺苷和化學能 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 三磷酸腺苷和分子 · 查看更多 »

分子量

分子量,又称“相对分子质量”,指组成分子的所有原子的原子量的总和,分子量的符号为Mr。定义为物质分子或特定单元的平均质量与12C质量的1/12之比值。由于是相对值,所以为无量纲量,单位为1。.

新!!: 三磷酸腺苷和分子量 · 查看更多 »

單磷酸腺苷

一磷酸腺苷(英文:Adenosine monophosphate,簡稱AMP),又名5'-腺嘌呤核苷酸或腺苷酸,是一種在核糖核酸(RNA)中發現的核苷酸。它是一種磷酸及核苷腺苷的酯,並由磷酸鹽官能團、戊糖核酸糖及鹼基腺嘌呤所組成。.

新!!: 三磷酸腺苷和單磷酸腺苷 · 查看更多 »

光合作用

光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.

新!!: 三磷酸腺苷和光合作用 · 查看更多 »

环磷腺苷

#重定向 环腺苷酸.

新!!: 三磷酸腺苷和环磷腺苷 · 查看更多 »

灌溉

溉就是人為方式使用天然降水(雨水)以外的其他水源供給土地或土壤水份,多半是用来种植农作物或其他植物,也可以用來維持地貌景觀,或在乾燥地帶或是在過度降雨後的地區進行,灌溉對農作物也有其他的好處,包括保護植物免於霜害、在糧食區抑制雜草成長,並且抑制土壤固結。不用灌溉而以雨水为唯一水源的农业称为旱田。 灌溉系統也會用來抑制灰塵、排放污水以及礦物的。灌溉系統常會和排水系統一起研究,後者是用天然或人工的方式除去某一區域地表或是地表以下的水份。 灌溉是五千多年來農業的中心特徵,也是許多文化的成果,是許多國家經濟及社會的基礎。.

新!!: 三磷酸腺苷和灌溉 · 查看更多 »

硫酯

硫酯(拼音:liú zhǐ;英文:Thioester)是一个硫原子和一分子酰基共价结合形成的化学物质,通式为R-S-CO-R'。硫酯键是高能化学键。 另一类的化学物质也会被看作是硫酯,这一类的化学物质可看成是酯键中的酰基上的氧原子为硫原子所取代,其通式则是R-O-CS-R'。这一类物质可以通过劳森试剂和酯的反应生成。这种硫代羰基化合物可用于有机合成。最近帝国学院教授东尼·巴雷特将硫酯用于非环状化合物的糖合成取得成功。 某些生物化学家认为硫酯在生命起源的过程中扮演很重要的角色。诺贝尔奖得主,比利时的克里斯汀·德·迪夫,认为先有一个“硫酯世界”(Thioester World),再发展到“RNA世界”,硫酯是有机体的直接祖先。 他解释道:.

新!!: 三磷酸腺苷和硫酯 · 查看更多 »

磷酸

磷酸(phosphoric acid)或稱為正磷酸(orthophosphoric acid),化學式H3PO4,是一种常见的无机酸,不易挥发,不易分解,几乎没有氧化性。具有酸的通性,是三元中强酸,其酸性比盐酸、硫酸、硝酸弱,但比醋酸、硼酸等强。由五氧化二磷溶于热水中即可得到。正磷酸工业上用硫酸处理磷灰石即得。用硝酸使磷氧化,可以得到较纯的磷酸;一般是83%-98%的稠厚溶液,如果再浓缩,可以得到无色晶体。磷酸在空气中容易潮解;加热会逐渐失水得到焦磷酸,进一步失水得到偏磷酸。磷酸容易自行結合成多種化合物如焦磷酸(pyrophosphoric acid)或三聚磷酸(triphosphoric acid)等。 除了用作化学试剂之外,磷酸也可主要用于制药、鐵銹轉化劑、食品添加物、溶劑、電解液、肥料、冶金、飼料等,也有在醫學美容及牙科的用途。 磷酸為三元酸,可解離出三個氫離子,因此可形成三種不同的酸根,分別是:磷酸二氫根、磷酸氫根以及磷酸根。.

新!!: 三磷酸腺苷和磷酸 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

新!!: 三磷酸腺苷和線粒體 · 查看更多 »

纳米技术

納米技术(Nanotechnology)是一门应用科学,其目的在于研究于奈米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国将其定义为「1至100奈米尺寸尤其是现存科技在奈米规模时的延伸」。奈米科技的世界为原子、分子、高分子、量子点集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。 微小性的持续探究使得新的工具诞生,如原子力显微镜和扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成奈米结构。奈米材质,不论是由上至下制成(将块材缩至奈米尺度,主要方法是从块材开始通过切割、蚀刻、研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。或由下至上制成(由一颗颗原子或分子来组成较大的结构,主要办法有化学合成,自组装和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。这一效应不是因为尺度由巨观变成微观而产生的,但它确实在奈米尺度时占了很重要的地位。 纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可以有许多重要的应用,也可以制造许多有趣的材质。.

新!!: 三磷酸腺苷和纳米技术 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 三磷酸腺苷和细胞 · 查看更多 »

细胞质基质

细胞质基质(cytoplasmic matrix、intracellular fluid(ICF)),又称胞质溶胶(cytosol)、基本细胞质(fundamental或ground cytoplasm)、透明质(hyaloplasm)。为细胞质中除去细胞器和内容物以外较为均质、半透明的液态胶状物质。.

新!!: 三磷酸腺苷和细胞质基质 · 查看更多 »

缓冲溶液

缓冲溶液(Pufferlösung;buffer solution;solution tampon)指由「弱酸及其共轭碱之鹽類」或「弱碱及其共轭酸之鹽類」所组成的缓冲对配制的,能够在加入一定量其他物质时减缓pH改变的溶液 。 前述定義中之所以要兩種成對物質,是因為反應可以同時朝向酸或鹼來緩衝,舉例醋酸与醋酸钠的混合溶液就是缓冲溶液。若加盐酸,pH不会下降太快,因为盐酸会跟醋酸钠反应,生成醋酸。相反,若加氢氧化钠,pH也不会增加太快,因为氢氧化钠会跟醋酸反应,生成醋酸钠 。 在许多化学反应中,缓冲溶液被用于使溶液的pH值保持恒定。 缓冲溶液对生命的产生与进化具有重要意义,因为多数生物都只能在一定pH范围内生长,例如血液就是一种缓冲溶液。.

新!!: 三磷酸腺苷和缓冲溶液 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

新!!: 三磷酸腺苷和真核生物 · 查看更多 »

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

新!!: 三磷酸腺苷和生物化学 · 查看更多 »

电池

电池,一般狹義上的定義是將本身儲存的化學能轉成電能的裝置,廣義的定義為將預先儲存起的能量轉化為可供外用電能的裝置。因此,像太陽能電池只有轉化而無儲存功能的裝置不算是電池。其他名稱有電瓶、電芯,而中文池及瓶也有儲存作用之意。 英文中,單一個電池結構叫做「Cell」(單電池),內部有多個Cell並連或串連的結構叫做「Battery Cell」(電池組)。市售一般乾電池其實構造上是「Cell」但英文上習慣稱「Battery」,汽車用鉛酸電池與方形9V電池則是真正的「Battery」。.

新!!: 三磷酸腺苷和电池 · 查看更多 »

焦磷酸盐

磷酸盐(英文:Pyrophosphate)是焦磷酸的盐。焦磷酸盐又称二磷酸盐或双磷酸盐。在食品添加剂中,焦磷酸盐的代号是E450。除了正盐以外,也有一些焦磷酸的酸式盐存在,比如Na2H2P2O7。.

新!!: 三磷酸腺苷和焦磷酸盐 · 查看更多 »

莫耳

#重定向 摩尔.

新!!: 三磷酸腺苷和莫耳 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 三磷酸腺苷和能量 · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 三磷酸腺苷和葡萄糖 · 查看更多 »

键能

键能通常指在标准状态下气态分子拆开成气态原子时,每种化學鍵所需能量的平均值。.

新!!: 三磷酸腺苷和键能 · 查看更多 »

脂肪酸

脂肪酸(Fatty acid)是一类羧酸化合物,由碳氫组成的烃类基团连结-zh-hant:羧基;zh-hans:羧酸;-所構成。 三个长链脂肪酸与甘油形成三酸甘油酯(Triacylglycerols),為脂肪的主要成分,歸於脂類。.

新!!: 三磷酸腺苷和脂肪酸 · 查看更多 »

腺苷

腺苷(Adenosine)是核苷的一種,由核糖(呋喃核糖)與腺嘌呤的一部分組成,中間由β-N9-配糖鍵(β-N9-glycosidic bond)連結。 腺苷在生物化學上扮演重要角色,包括以腺苷三磷酸(ATP)或腺苷雙磷酸(ADP)形式轉移能量,或是以環狀腺苷單磷酸(cAMP)進行信號傳遞等。此外腺苷也是一種抑制性神經傳導物(inhibitory neurotransmitter),可能會促進睡眠。.

新!!: 三磷酸腺苷和腺苷 · 查看更多 »

通貨

通货,是指在社会经济活动中作为流通手段的货币。货币的一个作为交换媒介形式的部分,通货是各国货币供应量中无需背书的部分,只包括纸币、硬币,不包括货币的存储功能以及其他支付手段。各国通货根据汇率在通货领域进行交换,由于不同的汇率而分为固定通货和浮动通货。各国一般都是控制自己本国通货的供需状态,唯一例外的是欧盟,由欧洲中央银行统一控制欧盟各国的通货政策。 各国由中央银行或财政部控制本国的通货,来调整经济状况,有的几个国家统一实行一种通货,有的国家允许外国通货在本国流通,但大部分国家发行自己本国的通货,并不允许外国通货在本国流通。在发达国家,由于支票和电子货币的大量使用,通货已经只占货币供应量中的小部分。 一般每一种通货都有二级或三级单位,,如一美圆等于100美分组成;一英镑等于100便士;一人民币元等于10角等于100分等。.

新!!: 三磷酸腺苷和通貨 · 查看更多 »

Protein Data Bank

#重定向 蛋白質資料庫.

新!!: 三磷酸腺苷和Protein Data Bank · 查看更多 »

核酸

核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.

新!!: 三磷酸腺苷和核酸 · 查看更多 »

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

新!!: 三磷酸腺苷和核苷酸 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 三磷酸腺苷和氢键 · 查看更多 »

氧化磷酸化

氧化磷酸化(oxidative phosphorylation,縮寫作 OXPHOS)是细胞的一种代谢途径,该过程在真核生物的线粒体内膜或原核生物的细胞膜上发生,使用其中的酶及氧化各类营养素所释放的能量来合成三磷酸腺苷(ATP)。虽然地球上的生物消耗的能源物质范围极广,为合成代谢直接提供能量的分子却几乎都是ATP。几乎所有的好氧性生物都以三羧酸循环-氧化磷酸化作为制造ATP的主要过程。该途径如此普遍的原因可能是:与其他的代谢途径,特别是糖酵解之类的无氧发酵途径相比,它能更高效地释放能量。 氧化磷酸化期间,电子在氧化还原反应中从电子供体转移到电子受体,例如氧。氧化还原反应所释放的能量用于合成ATP。在真核生物中,这些氧化还原反应在一系列线粒体内膜上的蛋白质复合体的参与下完成,而在原核生物中,这些蛋白质存在于细胞膜间隙中。这一串蛋白质称为电子传递链。真核生物包含五种主要的蛋白质复合体,而原核生物中存在许多不同的酶,以便利用各种电子供体和受体。 在“电子传递”过程中,质子被电子流过电子传递链所释放的能量泵出线粒体内膜。这会以pH梯度和跨膜电势差的形式产生势能。储存的能量通过让质子顺梯度跨膜内流,由称为ATP合酶的大型酶所使用;这个过程称为化学渗透。这种酶在磷酸化反应过程中就像一台机械马达,酶的一部分在质子流的驱动下不停旋转,将二磷酸腺苷(ADP)合成为三磷酸腺苷。 虽然氧化磷酸化是新陈代谢的重要组成部分,它却会产生活性氧如超氧化物和过氧化氢,使自由基扩散开来,破坏细胞及造成病变,还有可能导致老化。该代谢途径中的酶也是许多药物和毒物所抑制的目标。.

新!!: 三磷酸腺苷和氧化磷酸化 · 查看更多 »

水解

水解是一种化工单元过程,是物質與水反應,利用水形成新的物质的过程。通常是指鹽類的水解平衡。.

新!!: 三磷酸腺苷和水解 · 查看更多 »

激酶

在生物化学裡,激酶是一类从高能供体分子(如ATP)转移磷酸基团到特定靶分子(受質)的酶;这一过程谓之磷酸化。 一般而言,磷酸化的目的是“激活”或“能化”受質,增大它的能量,以使其可参加随后的自由能负变化的反应。所有的激酶都需要存在一个二价金属离子(如Mg2+或Mn2+),该离子起稳定供体分子高能键的作用,且为磷酸化的发生提供可能性。.

新!!: 三磷酸腺苷和激酶 · 查看更多 »

摩尔浓度

#重定向 體積莫耳濃度.

新!!: 三磷酸腺苷和摩尔浓度 · 查看更多 »

重定向到这里:

Adenosine triphosphate腺苷三磷酸

传出传入
嘿!我们在Facebook上吧! »