徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

超對稱粒子

指数 超對稱粒子

在粒子物理學裏,超對稱粒子或超伴子是一種以超對稱聯係到另一種較常見粒子的粒子。在這物理理論中,每種費米子都應有一種玻色子“拍檔”(費米子的超對稱粒子),反之亦然。沒有“破缺”的超對稱預測:一顆粒子和其超對稱粒子都應有完全相同的質量。至今仍然沒有標準模型粒子的超對稱粒子被發現。這可能表示超對稱理論是錯誤的,或超對稱並不是一種“不破”的對稱性。如果超對稱粒子被發現,其質量會決定超對稱破裂時的尺度 就實純量的粒子(如軸子)而言,它們有一個費米子超對稱粒子,也有一個實純量場。 在延伸的超對稱裏,一種特定粒子可能會有多于一個超對稱粒子。舉例,在四維空間裏,一個光子會有兩個費米超對稱粒子和一個純量超對稱粒子。 在零維的情況下(常被稱作矩陣力學),有可能存在超對稱,但沒有超對稱粒子。然而,這只有在當超對稱性不包含超對稱粒子的情況下才成立。.

16 关系: 基本粒子宇宙年表希格斯玻色子弦理論引力光子粒子列表粒子物理學物理学質子衰變超对称性粒子超對稱破缺超越标准模型的物理学超軸子超膠子胀子M理论

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 超對稱粒子和基本粒子 · 查看更多 »

宇宙年表

宇宙年代學,或宇宙年表依據大爆炸宇宙論描述宇宙的歷史和未來,目前的宇宙如何由普朗克時期隨著時間演化的科學模式,使用宇宙的共動坐標系時間參數。宇宙膨脹的模型即是所知的大爆炸,在2015年,估計開始於137.99 ±0.21億年前 。為了方便,將宇宙的演化分成三個階段。.

新!!: 超對稱粒子和宇宙年表 · 查看更多 »

希格斯玻色子

希格斯玻色子(Higgs boson)是標準模型裏的一種基本粒子,是一種玻色子,自旋為零,宇稱為正值,不帶電荷、色荷,極不穩定,生成後會立刻衰變。希格斯玻色子是希格斯場的量子激發。根據希格斯機制,基本粒子因與希格斯場耦合而獲得質量。假若希格斯玻色子被證實存在,則希格斯場應該也存在,而希格斯機制也可被確認為基本無誤。 物理學者用了四十多年時間尋找希格斯玻色子的蹤跡。大型強子對撞機(LHC)是全世界至今為止最昂貴、最複雜的實驗設施之一,其建成的一個主要任務就是尋找與觀察希格斯玻色子與其它種粒子。2012年7月4日,歐洲核子研究組織(CERN)宣布,LHC的緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。2013年3月14日,歐洲核子研究組織發表新聞稿正式宣布,先前探測到的新粒子暫時被確認是希格斯玻色子,具有零自旋與偶宇稱,這是希格斯玻色子應該具有的兩種基本性質,但有一部分實驗結果不盡符合理論預測,更多數據仍在等待處理與分析。 希格斯玻色子是因物理學者彼得·希格斯而命名。術語「玻色子」是為了紀念印度物理學者薩特延德拉·玻色而命名。玻色子的自旋为整数,其物理行為可以用玻色-愛因斯坦統計描述,不遵守泡利不相容原理,即處於單獨一個量子態上的粒子數目不受限制。他是於1964年提出希格斯機制的六位物理學者中的一位。2013年10月8日,因為“次原子粒子質量的生成機制理論,促進了人類對這方面的理解,並且最近由歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊緲子線圈探測器發現的基本粒子證實”,弗朗索瓦·恩格勒、彼得·希格斯榮獲2013年諾貝爾物理學獎。.

新!!: 超對稱粒子和希格斯玻色子 · 查看更多 »

弦理論

弦理論,又稱弦論,是发展中理論物理學的一支,结合量子力学和广义相对论为万有理论。弦理論用一段段“能量弦線”作最基本單位以说明宇宙里所有微观粒子如電子、夸克、微中子都由這一維的“能量線”所組成;換而言之,弦論主張「弦」以不同的振動模式對應到自然界的各種基本粒子。 較早時期所建立的粒子學說則是認為所有物質是由零維的點粒子所組成,也是目前廣為接受的物理模型,也很成功的解釋和預測相當多的物理現象和問題,但是此理論所根據的粒子模型卻遇到一些無法解釋的問題。比較起來,弦理論的基礎是波動模型,因此能夠避開前一種理論所遇到的問題。更深的弦理論學說不只是描述弦狀物體,還包含了點狀、薄膜狀物體,更高維度的空間,甚至平行宇宙。弦理論目前尚未能做出可以實驗驗證的準確預測。.

新!!: 超對稱粒子和弦理論 · 查看更多 »

引力光子

在理论物理学中,引力光子(graviphoton 或 gravivector)是一种假想的粒子,它出现于卡鲁扎-克莱因理论中,被看作是度规张量(引力场)在高于四维的时空中的激发。不过,其关键的物理性质与一个(有质量的)光子相类似:它诱导产生某种“矢量力”,有时称为“第五种力”。电磁四维势A_\mu代表着度规张量g_多出来的一个分量,这里的数字5表明有一个多出来的的维度,也就是第五维。 在拥有额外的超对称性(额外超引力理论)的引力理论中,引力光子一般被认为是引力子的超对称粒子,且其性质类似于光子,会倾向于与引力的强度相耦合。这一发现作出于20世纪70年代后期。 与引力子不同的是,它所提供的可能是一种排斥力(同时也有吸引力),也就是某种意义上的反重力。在某些特殊情况下,某些理论——一般是由五维理论降维而来的理论——认为,它在静态极限下或许能完全抵消引力。 Joël Scherk讨论了这种现象的半真实性,进而开启了关于这一现象的一系列研究。 .

新!!: 超對稱粒子和引力光子 · 查看更多 »

粒子列表

这是一份粒子物理学的粒子清单,包括已知的和假设的基本粒子,以及由它们合成的复合粒子。.

新!!: 超對稱粒子和粒子列表 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 超對稱粒子和粒子物理學 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 超對稱粒子和物理学 · 查看更多 »

質子衰變

質子衰變,在粒子物理學上,是一個假設的放射性衰變,這假設預言了質子在衰變的時候,會變成更輕的次原子粒子,通常是中性π介子和正電子。質子衰變從未被證實,至今仍沒有證據顯示質子衰變的可能。 在標準模型理論中,質子是重子的一種,理論上它是穩定的,因質子的重子數是大致守恆。即質子不會以微擾的形式衰變成其他粒子,因為質子已經是最輕的(因而也是最低能量的)重子。 (GUTs)明確地否定了重子數的對稱性,允許質子經由X玻色子而衰變。質子衰變是各式提議的 GUTs 中少數可觀察的一種。現時,所有試圖觀察這個衰變的實驗無一成功。.

新!!: 超對稱粒子和質子衰變 · 查看更多 »

超对称性粒子

#重定向 超對稱粒子.

新!!: 超對稱粒子和超对称性粒子 · 查看更多 »

超對稱破缺

超對稱破缺是在粒子物理學中為了滿足精確實驗的超對稱所必需的一個程序,以從超對稱理論觀看外觀上非超對稱的物理。這是自發對稱破缺的例子。在超引力,這個結果對應於稍加修飾後成為使重力微子帶有質量的希格斯機制。 超對稱破缺發生在超對稱破缺尺度。超伴子(超對稱性粒子)應該和其對應的常規粒子有相同的質量;若缺乏超對稱破缺,它的質量就會變得更重。.

新!!: 超對稱粒子和超對稱破缺 · 查看更多 »

超越标准模型的物理学

超越标准模型的物理学(Physics beyond the Standard Model,缩写为BSM)是为了弥补标准模型的不足而进行的物理学研究。标准模型不能解释的现象包括、强CP问题、中微子振荡、重子不对称性以及暗物质和暗能量的性质。 而标准模型自身的数学理论架构也存在着的问题:标准模型与由广义相对论得到的理论模型并不兼容,以致在特定条件下,如大爆炸以及黑洞事件视界这样的时空奇点,两个模型中的其中一个甚或是两者全体会失效。 为超越标准模型已做的理论探索包括通过超对称性对标准模型进行扩展以及构造像超弦理论、M理论以及扩展维度这样全新的理论。这些理论会重构目前现象的完备性,也就是说会出现现有理论所不能预测的现象。因而它们之中到底哪个是“正确”的,或者说是迈向万有理论的“最好的一步”,只能通过实验得到答案。它们也因此成为了目前理论物理学以及实验物理学最为活跃的研究领域之一。.

新!!: 超對稱粒子和超越标准模型的物理学 · 查看更多 »

超軸子

超軸子是一假想費米子,為軸子的超對稱粒子。此外軸子亦有一超對稱玻色子─Saxion。超軸子的出現有助解釋強CP問題─為何在量子色動力學中CP不會被破壞。解釋此問題的理論─皮塞-奎恩理論─指出超軸子是「最輕超對稱粒子」﹝Lightest Supersymmetric Particle﹞,及暗物質的候選粒子。.

新!!: 超對稱粒子和超軸子 · 查看更多 »

超膠子

超膠子,也被叫做膠微子,是一種假想粒子,為膠子的超對稱粒子,一共有八種色荷組合。它的輕子數及重子數皆為0,而自旋為1/2。 理論上,超膠子成對產生,即粒子與其反粒子同時產生,但因它是馬約拉納費米子,它的反粒子就是它本身。.

新!!: 超對稱粒子和超膠子 · 查看更多 »

胀子

在粒子物理学中,胀子()是额外维度理论中当允许紧致化的维度的体积变化时出现的一种假想粒子。它所出现的形式,例如作为卡鲁扎-克莱因理论中紧致化的维度中的引力标量子。它是一个总是伴随着重力的标量场Φ的粒子。作为比较,在布兰斯迪克配方中的广义相对论、万有引力常数或等价(通过自然单位)中,普朗克质量是常数。如果代替这个常数、标量场和使用的动力学场,则与引力所对应的由此产生的粒子是胀子。.

新!!: 超對稱粒子和胀子 · 查看更多 »

M理论

M理論(M-theory)是物理學中將各種相容形式的超弦理論統一起來的理論。此理論最早由愛德華·威滕於1995年春季在南加州大學舉行的一次弦理論会议中提出。威滕的報告啟動了一股研究弦理論的熱潮,被稱為。 弦理論學者在威滕的報告之前已經識別出五種不同的超弦理論。儘管這些理論看上去似乎非常不一樣,但多位物理學家的研究指出這些理論有着微妙且有意義的關係。特別而言,物理學家們發現這些看起來相異的理論其實可以透過兩種分別稱為S對偶和T對偶的數學變換所統合。威滕的猜想有一部份是基於這些對偶的存在,另有一部份則是基於弦理論與11維超重力場論的關係。 儘管尚未發現M理論的完整表述,這種理論應該能夠描述叫膜的二維及五維物體,而且也應該能描述低能量下的11維超引力。現今表述M理論的嘗試一般都是基於矩陣理論或AdS/CFT對偶。威滕表示根據個人喜好M應該代表Magic(魔術理論)、Mystery(神秘理論)或Membrane(膜理論),但應該要等到理論更基礎的表述出現後才能決定這個命名的真正意義。 有關M理論數學架構的研究已經在物理和數學領域產生了多個重要的理論成果。弦理論學界推測,M理論有可能為研發統合所有自然基本力的統一理論提供理論框架。當嘗試把M理論與實驗聯繫起來時,弦理論學者一般會專注於使用額外維度緊緻化來建構人們所處的四維世界候選模型,但是到目前為止,物理學界還未能證實這些模型是否能產生出人們所能觀測到(例如在大型強子對撞機中)的物理現象。.

新!!: 超對稱粒子和M理论 · 查看更多 »

重定向到这里:

超伴子超对称粒子

传出传入
嘿!我们在Facebook上吧! »