徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

耀斑

指数 耀斑

閃焰是在太陽的盤面或邊緣觀測到的突發的閃光現象,它會釋放出高達6 × 1025焦耳的巨大能量(大約是太陽每秒鐘釋放總能量的六倍,或相當於160,000,000,000百萬噸TNT,超過舒梅克-李維九號彗星撞木星能量的25,000倍)。它們通常,但並非總是,伴隨著發生日冕大量拋射的事件。閃焰會從太陽日冕拋射出電子、離子、和原子的雲進入太空。通常,在事件發生後的一兩天,這些雲就可能會到達地球。這個名詞也適用在發生類似現象的恆星,但通常會使用「恆星閃焰」來稱呼。 閃焰會影響到太陽所有的大氣層(光球、色球和日冕)。當電漿物質被加熱至數千萬K的溫度時,電子、質子和更重的離子都會被加速至接近光速。它們產生電磁頻譜中所有波長的電磁輻射,從無線電波到伽瑪射線,然而絕大部分的能量都在視覺範圍之外,因此絕大碩的閃焰都是肉眼看不見的,必須要用特別的儀器觀測不同的頻率。閃焰發生在圍繞著太陽黑子的活動區,強烈的磁場從那兒穿透光球聯接日冕和太陽內部的磁場。 閃焰會突然(時間的尺度在幾分鐘至幾十分鐘)釋放儲藏在日冕中的磁場能量;日冕大量拋射(CME)也可以釋放出相等的能量,但是這兩者之間的關係尚不明確。 閃焰發射的X射線和紫外線輻射會影響地球的電離層,擾亂遠距離的無線電通訊。在分米波長的電波輻射會直接干擾雷達和使用這些波長的儀器和設備的操作。 對太陽閃焰的首度觀測是理查·卡靈頓和理查·霍奇森在1859年獨立完成的"", Monthly Notices of the Royal Astronomical Society, v20, pp13+, 1859,在黑子群當中看見一個小範圍的明亮區域。觀察望遠鏡或衛星觀測到的恆星光度變化曲線,可以推斷其他恆星是否產生恆星閃焰。 太陽閃焰發的頻率隨著平均11年的活動週期,從太陽位於活躍期的一天數個,到寧靜期的一星期不到一個,有很大的變化(參見太陽週期)。大的閃焰出現的頻率遠低於小的閃焰。 根據NASA的觀測,在2012年7月23日,一個有著巨大和潛在破壞力的太陽超級風暴(閃焰、日冕大量拋射、和)與地球擦身而過。估計在2012年至2022年之間,有12%的機率會發生類似的事件.

104 关系: 危宿三合金獵犬天空實驗室2號天體震動太空天氣太空航行對人體的影響太阳太阳磁场太阳系太阳风暴 (消歧义)太阳黑子太阳活动太阳活动预报太陽天文台太陽天文學年表太陽圈太陽哨兵太陽動力學天文台太陽風暴列表太陽高能粒子太陽質子事件太陽輻射太陽週期太陽極大期太陽極大期任務衛星太陽極小期宇宙 (紀錄片)宇宙線巨蟹座DX巴士底日事件巴納德星中国厘米分米波频谱日像仪事件視界望遠鏡伽馬射線天文學土司空地球殊異假說地磁场刺客信条III刺客教條IV:黑旗刺客教條:啟示錄唧筒座冕 (大氣層)光球玩串真人Show火星理查·克里斯多福·卡林頓磁层磁暴移動迷宮 (電影)移動迷宮:焦土試煉...空间风化第10太陽週期等离子体粒子輻射红缨-6便携式防空导弹约翰·霍华德·德林杰羅斯128b电离层無限的未知白光耀斑隼鸟号蟹狀星雲莫爾頓波蝎虎座EV行星際塵雲费米伽玛射线空间望远镜超人超人前传 (第三季)超級閃焰过电压范艾倫探測器航天與太陽有關的條目阿爾西亞山薩加莫爾山電波天文台葛羅姆布里吉1830色球色球-日冕过渡层電離層-熱成層風暴探測耀星虹膜炎K2-155dLHS 1140TRAPPIST-1WISEP J190648.47+401106.8X射线天文学恒星恆星磁場恆星質量流失正義聯盟:末日審判毫微閃焰比邻星沃夫1061湯馬士·戈爾德 (天文學家)月球背面月球殖民戴立克的進化日冕大量抛射数量级 (能量)1859年太陽風暴1989年3月磁暴2003年11月2012年現象993年 扩展索引 (54 更多) »

危宿三

危宿三 (飛馬座ε)是飛馬座最亮的恆星,視星等2.4等,是一顆2等星,通常以裸眼就能看見。它的英文名稱Enif (EE-nif)源自阿拉伯文,意思是鼻子。天體測量衛星依巴谷使用視差測量其距離,得到的結果是大約.

新!!: 耀斑和危宿三 · 查看更多 »

合金獵犬

《合金獵犬》(クロムハウンズ,Chromehounds)是由日本From Software製作,SEGA發行的Xbox 360平台3D動作射擊遊戲,於2006年6月29日正式發售。多人連線伺服器已於日本時間2010年1月7日16時59分停止服務。.

新!!: 耀斑和合金獵犬 · 查看更多 »

天空實驗室2號

天空實驗室2號(Skylab 2,也縮寫為SL-2和SLM-1),是美國《天空實驗室計劃》的首次載人航天任務,也是美國發射的第一顆為了繞軌太空站而建造的衛星。這次任務的衛星在1973年5月25日由農神1B號運載火箭負責運載發射,共乘坐3名宇航员。“天空實驗室2號”任務得名於所載的衛星名稱,也是人類探索太空的里程碑式任務。該任務是人類第一次成功地將宇航员送上位於地球軌道的太空站,並且順利返回。之前前蘇聯的太空站禮炮1號及聯盟11號在完成對接、分離任務后返回地球時,返回艙的壓力閥門損壞,造成3名宇航员血液沸騰死亡,因此該任務並未完成。因此,天空實驗室2號仍然是第一次成功的載人太空站任務。 之後,美國太空總署又進行了天空實驗室3號和天空實驗室4號兩次将宇航员送上太空站的任務。由於第一次天空實驗室1號沒有載人,第二、三、四次任務徽章上的任務數字均被向前移了一位。.

新!!: 耀斑和天空實驗室2號 · 查看更多 »

天體震動

很多天體都會以地震波的形式釋放大量能量,造成該天體的劇烈震動,是為天體震動。它以震動的主體分類,如地震、月震等。.

新!!: 耀斑和天體震動 · 查看更多 »

太空天氣

太空天气是在地球週圍的太空環境條件改變的觀念。它與行星大氣內的天氣觀念不同,涉及太空中的電漿、磁場、輻射和其他物質。"空间气象"經常隱藏性的意味著在地球附近的磁層,但是它也是在 星際間(並且經常是星際空間)的研究 在我們自己的太陽系內,太空天气受到太陽風的密度和速度,還有太陽風攜帶的電漿造成的行星際磁場(IMF)很大的影響。不同的物理現象與太空天氣有關,包括地磁風暴和次風暴、范艾倫輻射帶的活動、電離層的擾動和閃爍、極光和在地球表面的地磁的誘導電流。日冕物質拋射和它們關聯的衝激波經由壓縮磁層和觸發地磁風暴也是導引空间气象的重要驅動力。 被日冕物質拋射或閃焰加速的太陽高能粒子,也是太空天氣的重要駕御者,它能經由感應電流危害到太空船上的電子設備,和威脅到太空人的生命。 太空天气在幾個相關的地區對太空探索和發展發揮了深遠的影響。不斷變化的地磁條件可以造成大氣密度的急劇改變,造成低地球軌道上太空船高度的墮落。由於太陽活動增強產生的地磁風暴會導致太空船上的檢測器暫時失明,或是干擾到船上的電子儀器,或是太空環境的條件對設計太空船的遮罩和載人太空船的生命支援系統也是很重要的。此外,磁暴也會影響到在高緯度上常態飛行的飛機,使受到的輻射總量增加。.

新!!: 耀斑和太空天氣 · 查看更多 »

太空航行對人體的影響

人類在生理學上能夠良好地適應在地球上生存。載人太空航行會對人體產生許多負面影響。最顯著之長期影響是以及。其他明顯的影響包括心血管系統功能減慢、紅血球減少、平衡障礙以及免疫系統衰弱。較少的症狀包括液體流動重置(“fluid redistribution”,讓處於失重狀態的太空人產生「月球臉」似的外觀)、 身體質量的損失、鼻部堵塞、睡眠障礙以及過量腸胃脹氣。大多數的不良影響會在太空人回到地球後迅速恢復。 前往太空的工程問題及發展太空飛行器推進系統已有超過一個世紀,並耗費數百萬小時的研究。近年來對於人類如何在太空中延長生存和工作的時間已有越來越多的研究。這個問題需要從物理和生物科學上來切入,並且已經成為除了資金以外的最大挑戰。要克服這個困難,首先就是要嘗試去了解長途太空旅行對人體的影響。.

新!!: 耀斑和太空航行對人體的影響 · 查看更多 »

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

新!!: 耀斑和太阳 · 查看更多 »

太阳磁场

太阳磁场通常是根据在磁场中光谱线分裂的塞曼效应(Zeeman effect)测量的,目前的测量精度大约为0.3高斯。 太阳磁场主要在太阳大气层 - 光球、色球和日冕低层中,而在太阳内部或日冕外则很弱。太阳的基本磁场强度约为1高斯,局部磁场很强,如有的黑子磁场可达3000高斯。 磁场是太阳活动的重要因素,它与黑子、谱斑、日珥和耀斑等都有密切关系。 Category:太陽 Category:磁场.

新!!: 耀斑和太阳磁场 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 耀斑和太阳系 · 查看更多 »

太阳风暴 (消歧义)

太陽風暴(Solar storm)可以指:.

新!!: 耀斑和太阳风暴 (消歧义) · 查看更多 »

太阳黑子

太陽黑子是太陽光球上的臨時現象,它們在可見光下呈現比周圍區域黑暗的斑點。它們是由高密度的磁性活動抑制了對流的激烈活動造成的,在表面形成溫度降低的區域。雖然它們的溫度仍然大約有3000-4500K,但是與周圍5,780K的物質對比之下,使它們清楚的顯視為黑點,因為黑體(光球非常近似於黑體)的熱強度(I)與溫度(T)的四次方成正比。如果將黑子與周圍的光球隔離開來,黑子會比一個電弧更為明亮。當它們在太陽表面橫越移動時,會膨脹和收縮,直徑可以達到80,000公里,因此在地球上不用望遠鏡也可以直接看見。 激烈的磁場活動顯示,太陽黑子會導致次一級的活動,像是冕圈和再聯結事件。大多數的閃焰和日冕物質拋射都起源於可見到黑子群存在的磁場活動區域。相似的現象也在一些有著星斑的恆星上被直接觀測到, K. G. Strassmeier, 1999-06-10, University of Vienna, "starspots vary on the same (short)time scales as Sunspots do", "HD 12545 had a warm spot(350 K above photospheric temperature; the white area in the picture)"。 太阳黑子很少单独活动,常是成群出现。黑子的活动周期为11.2年,活躍時会对地球的磁场產生影響,主要是使地球南北极和赤道的大气环流作经向流动,从而造成恶劣天气,使气候转冷。嚴重時會對各类电子产品和电器造成损害。 Image:Sunspots 1302 Sep 2011 by NASA.jpg|2011年9月的太陽黑子。 Image:Sun projection with spotting-scope.jpg|2004年6月22日的太陽黑子影像。 Solar eclipse of October 23 2014 start of partial.jpg|2014年10月23日日食中的2192號太陽黑子 Image:Sunspot 1112.jpg|2010年10月在不同黑子上方的看見的日冕構造。.

新!!: 耀斑和太阳黑子 · 查看更多 »

太阳活动

太陽活動是太陽所發出太陽輻射的總量變化,以及數千年來的光譜分布變化。這些活動具有一些週期性,其中最主要的是長達11年的太陽週期(或稱太陽黑子週期)。不過這些變化也具有非週期性的波動。太陽活動的估計原本是透過計算太陽黑子數量,近幾十年來,已經改由人造衛星直接觀測。氣候變遷科學家想要了解太陽活動的變化,會對地球與地球氣候造成哪些影響。太陽活動對地球的影響被稱為"太陽驅動力"。 在衛星時代來臨前,總體太陽輻照度(TSI)的變動,雖然只是在紫外線的波長上有百分之幾的差異,但始終都在檢定的門檻之下。現在對總太陽輸出的測量變化(涵蓋最後這三個11年的太陽黑子週期)只有0.1%的差異 或是在11年黑子周期期間的峰頂對谷底大約是1.3 W/m²,而在地球大氣層上層表面接收到各式各樣太陽輻射的平均值為1,366W/ m²(每平方米1,366瓦)。沒有對較長期變異直接測量的代理測量變通的不同度量,以最近的結果建議在過去2,000年間的變動大約在0.1%,雖然其他來源的資料建議從1675年起的太陽輻照度增量為0.2% 。太陽變異和火山作用的組合可能是造成一些氣候變化的起因,像是蒙德極小期。 對2006年現有文獻的回顧,刊登在自然,確定自1970年代中期太陽亮度沒有淨增值,並且在過去400年中太陽輸出能量的變化不太可能造成全球性變暖的主要部份變化。然而,同一份報告的作者也警告說:"除了太陽的亮度之外,來自宇宙射線和紫外線輻射對氣候更微妙的影響不可能被排除。他們也補充說,因為物理模形認為這樣的作用不足以開發,使得這些影響尚未能被證實" 。.

新!!: 耀斑和太阳活动 · 查看更多 »

太阳活动预报

太阳活动预报是对太阳活动所进行的预报工作。 按照预报时间的长短分为长期、中期和短期预报。.

新!!: 耀斑和太阳活动预报 · 查看更多 »

太陽天文台

太陽天文台是安裝了特別的望遠鏡,用來監測太陽的天文台。為此,它們通常有一架或多架的太陽望遠鏡。 愛因斯坦塔是位於德國波茨坦愛因斯坦科學公園內的太陽天文台。 太陽天文台研究與太陽有關的現象。太陽,最靠近地球的一顆恆星,讓我們一個獨特的機會,以高解析度來研究恆星物理。直到1990年代It was, until the 1990s,,它是唯一一顆我們能獲得表面影像的恆星。太陽天文學家感興趣的一般主題是11年的週期(也就是太陽週期)、太陽黑子、磁場活動(參見太陽動力學)、太陽閃焰、日冕物質拋射、較差自轉和電漿物理學。.

新!!: 耀斑和太陽天文台 · 查看更多 »

太陽天文學年表

這是太陽的天文學年表,記錄人類有關太陽的發現。.

新!!: 耀斑和太陽天文學年表 · 查看更多 »

太陽圈

太陽圈(heliosphere)是太陽所能支配或控制的太空區域。太陽圈的邊緣是一個磁性氣狀泡,並且遠遠的超出冥王星之外。從太陽"吹"出的電漿,也就是所謂的太陽風,創建和維護著這個鼓起的泡沫,並且抵抗來自銀河系的氫氣和氦氣,也就是外面的星際物質,滲入的壓力。太陽風從太陽向外流動,直到遭遇到終端震波,然後在那兒突然的減速。航海家太空船積極的探測太陽圈的邊界,穿越過震波和進入日鞘,這是要到達太陽圈最外層的邊緣,稱為日球層頂的過渡區。當太陽在空間中移動時,太陽圈的整體形狀是由星際物質控制的,它似乎不是一個完美的球形。以有限的資料用於未探勘過的自然界,已經推導出許多理論的架結構。 在2013年9月12日,NASA宣布航海家一號已經在2012年8月25日穿過太陽圈,當時它測量到的電漿密度突然增加了40倍。因為日鞘標誌著太陽風和其餘銀河系的一種邊界,可以說航海家一號已經離開太陽系,抵達星際空間。.

新!!: 耀斑和太陽圈 · 查看更多 »

太陽哨兵

太陽哨兵是在太陽極大期研究太陽的太空任務,在獵戶計畫開始之前的最後計畫。太陽哨兵是NASA與恆星共存計畫的一部分,總共將發射六艘太空船,分成三組進行相關研究。.

新!!: 耀斑和太陽哨兵 · 查看更多 »

太陽動力學天文台

太陽動力學天文台(Solar Dynamics Observatory, SDO)是美國太空總署一個觀測太陽至少5年的太空任務。本衛星是在2010年2月11日發射。SDO是美國太空總署觀測日地關係的“與恆星共存”(Living With a Star,LWS)計劃的一部分。LWS計劃的目的是要更加了解太陽和地球的關係。SDO的科學目標是以小尺度的時間和空間下以多波段研究太陽大氣層,以了解太陽對地球和近地球太空區域的影響。預期SDO將能研究太陽的磁場如何產生以及磁場結構、如何儲存電磁能量與能量如何以太陽風、高能粒子和多種波長的輻射等形式釋放進太陽圈和外太空。 太陽動力學天文台的任務徽.

新!!: 耀斑和太陽動力學天文台 · 查看更多 »

太陽風暴列表

太陽風暴是太陽引起的干,通常與來自太陽黑子活動區的太陽閃焰引起的日冕雲和日冕大量拋射相關聯,也有少數與日冕洞關。大多數活著的恆星都會對太陽物理學領域研究的太空天氣產生干擾;這是與許多領域,像是恆星天文學和行星科學結合的一個學門。在太陽系,太陽可以產生劇烈的地磁和質子風暴,對無線電通訊設施衛星通訊和相關太空科技(包括全球衛星定位系統)的暫時或永久的損壞,使廣大區域的電力供應中斷造成停電。強烈的太陽風暴也可能危害在高緯度、高海拔飛航的飛機與載人太空航具 Geomagnetic storms are the cause of auroras.

新!!: 耀斑和太陽風暴列表 · 查看更多 »

太陽高能粒子

太陽高能粒子是來自太陽的高能量粒子,在1940年代初期就已經被觀測到。他們包含質子、電子和能量在數十KeV至GeV的重離子(速度最快的粒子可以達到光速的80%)。人們對它們特別重視和感興趣,因為他們會危及在外太空的生命(特別是40MeV的粒子)。太陽高能粒子(SEPs)可以經由兩種過程產生:從耀斑場所獲得能量或是與日冕物質拋射(CMEs)結合的衝激波。但是,只有大約1%的CMEs能夠產生強大的SEP事件。 兩種主要的機制提供加速度的可能:擴散衝擊加速度(DSA,有時稱為第一階費米加速)或衝激漂移機制。SEPs可以在5至10個太陽半徑(地日距離的0.5%)的距離內被加速至數十MeV的高能量,並且在閃焰或物質拋射之後短短的數小時內就抵達地球。這使得預測和對SEP事件的警報很具有挑戰性。SEP事件的組成和種子的分布也是一個活躍的研究領域。.

新!!: 耀斑和太陽高能粒子 · 查看更多 »

太陽質子事件

太陽質子事件是發生在太陽輻射的質子被加速成為非常高的能量,其成因為接近太陽閃焰或是在星際空間受到和激波關聯的日冕物質拋射。這些高能的質子造成一些影響:它們可以穿透地球磁場和導致電離層的電離;類似極光效果的事件,不同的是那是電子而非質子造成的;高能的太陽質子也會對太空人和太空船造成重大的輻射傷害。 太陽質子所具有的能量通常不足以穿透地球的磁場,在異常強烈的太陽閃焰事件,質子可以獲得足夠的能量,滲透進地球的磁層和更深的電離層。能夠深入滲透的地區包括北極、南極、和南大西洋磁場異常區。 質子是帶電的粒子,因此能夠受到磁場的影響。當高能質子離開太陽時,它們受到強大的太陽磁場牽引(或引導)。當太陽質子進入由地球磁層主導的區域後,地球磁場強度超越太陽的磁場,它們受到地球磁場的引導進入大多數地球磁力線進出的極區。 被引導至極地的高能質子與大氣中的成分碰撞,並且在電離的過程中釋放能量,大多數的能量都在抵達電離層的最低處(範圍在50-80公里)消耗殆盡。這一區域對電離層的無線電通訊非常重要,因為這是大多數的無線電訊號能量被吸收的區域。高能質子的進入增強了電離的程度,提高了在電離層低處的吸收程度並且可以完全阻斷經過極地地區的無線電通訊,這類事件被稱為極冠吸收事件(Polar Cap Absorption events或PCAs)。這些事件大約開始和結束於太陽質子的能量高於10MeV(百萬電子伏特),而在地球同步衛星的高度大約是10Ppfu(粒子通量單位)。 更嚴重的質子事件會與可以導致一般輸電系統中斷的磁暴結合在一起,但是質子事件本身不僅與輸電系統的異常中斷無關,連磁暴也不是它們引發的,輸電系統只是對地球磁場的波動敏感。 極端強大的太陽質子閃焰能夠產生能量超過100MeV的質子,經由二次輻射的效應會增加地面的中子計數程度,這種罕見的事件被稱為地面級事件(Ground Level Events或GLE's)。 沒有具體的科學證據顯示高能質子事件引發的地面級事件,特別是在大多數人口所在的緯度,有害於人體的健康。地球的磁場在阻止高能粒子輻射抵達地面級的效果特別好,飛越極區的商業飛機在太陽質子事件時測量到高空輻射的增強,但是設置在地面的預警系統會提醒飛行員限制他們在較低的高度巡航。不經過極區的飛機航線受到太陽質子事件衝擊的影響遠低於極區的航線。 當太空人在地球磁場的保護罩之外時,例如,太空人在轉換軌道或在月球上時,會經歷重大的太陽質子輻射暴露。然而,太空人在低地球軌道和依然在太空船厚重的遮罩遮蔽時,他們受到的影響會降至最低。在低地球軌道的質子輻射強度會隨著軌道傾角的增加而增強,因此,越靠近極區的太空船,暴露在高能太陽質子輻射下的風險就越大。 太空人曾經報告在高能太陽質子事件時,高能質子會與視神經作用而看到閃光或條紋,相似的閃光和條紋也出現在高能太陽質子造成太空船上的靈敏的光學檢測器(像是星光偵測器和照相機)失靈的時候。在極端的事件中影響是特別的顯著,使它們不能獲得高品質的太陽或恆星的影像,這會導致太空船迷失它們的方向,而這是地面控制器能維持控制的關鍵。 高能質子風暴也可以使太空船的電荷達到驚人的程度,而危害到電子元件,也可能導致電子元件的運作不正常。例如,改變了固態記憶體,這可能導致資料或軟體被汙染(破壞),和造成太空船正在執行的命令得到意料之外的結果(幻象)。高能質子風暴也可能毀壞或降低將太陽能轉換成電力的太陽能電池板效率。長年暴露在來自太陽的高能質子活動下,太空船會失去大量的電力而需要關閉許多重要的儀器。.

新!!: 耀斑和太陽質子事件 · 查看更多 »

太陽輻射

太陽輻射(Solar radiation)指太陽從核融合所產生的能量,經由電磁波傳遞到各地的輻射能。太陽輻射的光學頻譜接近溫度5800K的黑體輻射。大約有一半的頻譜是電磁波譜中的可見光,而另一半有紅外線與紫外線等頻譜。如果紫外線沒有被大氣層或是其他的保護裝置吸收,它會影響人體皮膚的色素的變化。 測量上通常都用全天日射計與銀盤日射計(Silver-disk pyrheliometer)等儀器來測量太陽輻射。.

新!!: 耀斑和太陽輻射 · 查看更多 »

太陽週期

太陽週期,或是太陽磁場活動週期是太陽的各種現象,包括太空天氣後面的動態引擎和能量來源。通過氫磁流體發電機的程序供給的能量,誘導太陽內部的流動,形成太陽週期。.

新!!: 耀斑和太陽週期 · 查看更多 »

太陽極大期

太陽極大期是在正常約11年的太陽週期中活動最活耀的時期。當太陽極大期時,會出現大量的太陽黑子,並且太陽的輻射會增加大約0.07% 。增強的太陽能量輸出可能會影響一些的全球氣候,最近的一些研究顯示一些與區域氣候模式的相關性。 因為太陽赤道轉速比兩極快,在太陽極大期,太陽的磁場線被扭曲的最為強烈。太陽週期從一個最大期到下一個最大期的平均長度是11年,但觀測到的週期變化從9年到14年不等。 巨大的太陽閃焰常常發生在太陽極大期。例如,1859年太陽風暴撞擊到地球時,引發的極光,遠在非常南邊,大約在北緯42°的羅馬都能看見。.

新!!: 耀斑和太陽極大期 · 查看更多 »

太陽極大期任務衛星

太陽極大期任務衛星是1980年2月14日發射,用於研究太陽現像,特別是太阳耀斑的衛星。 值得注意的是,為了延長這顆衛星的工作時期,挑戰者號太空梭曾經在1984年將它回收置入貨艙中進行維修,然後再放回軌道上。這顆衛星的錨鉤在設計時就符合太空梭的機械臂夾具,所以能夠回收進行維修。 出人意料的是,攜帶的主動空腔輻射顯示器(Active Cavity Radiometer Irradiance Monitor,縮寫為ACRIM)發現在太陽黑子最活耀的時期,太陽的光度是增亮而非預期的變暗。因為在太陽黑子週圍產生的光斑增加的亮度超過黑子所抵銷掉的。 太陽極大期任務衛星在1989年12月2日重返大氣層,並如預期的燒毀而結束任務。.

新!!: 耀斑和太陽極大期任務衛星 · 查看更多 »

太陽極小期

太陽極小期是太陽週期中太陽活動最低的時期,在這段期間太陽黑子和閃焰的活動最少,經常好幾天都不會發生。極小期的日期使用12個月的平滑曲線平均值來描述,因此確認極小期的時間通常是在極小值發生之後的6個月。 與太陽極小期相對的是太陽極大期,那可能會出現上百顆太陽黑子。 太陽極小期和太陽極大期是太陽11年的活動週期中的兩個極端時期。在太陽極大期,太陽表面佈滿了太陽黑子,經常有閃焰噴發,並且將數十億噸的帶電氣體雲拋入太空中。是觀測天空中極光的好時段,但強烈的輻射卻不利於太空人的活動。動力故障、衛星的功能和通信被打斷、GPS接收器發生故障,都是太陽極大期可能發生的一些事情。 太陽極小期則不一樣,太陽黑子的數量很少 - 有時幾天或幾個星期都沒有黑子,閃焰的活動平靜。是從事太空活動最安全的時段,但是天空中的極光就平淡無奇,不會引人注目了。 在2006年4月,太陽活動的週期已經進入極小期。.

新!!: 耀斑和太陽極小期 · 查看更多 »

宇宙 (紀錄片)

《宇宙》(The Universe),是一部美國紀錄片電視系列,其內容主要與太空和天體等主題有關。《宇宙》主要是由透過電腦繪圖製作的天體電腦圖形,以及訪問宇宙学、天文學和天体物理学專家的片段組成。.

新!!: 耀斑和宇宙 (紀錄片) · 查看更多 »

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

新!!: 耀斑和宇宙線 · 查看更多 »

巨蟹座DX

巨蟹座DX是一颗位于巨蟹座的红矮星,质量约为太阳的9%。它是一颗耀星,通过恒星表面色球层上大规模的耀斑爆发改变光度。 虽然巨蟹座DX离太阳只有11.8光年,是离太阳系第十八近的恒星系统,但是它的视星等只有14.81等,远低于肉眼可见的最低极限。巨蟹座DX是巨蟹座中离地球最近的恒星。.

新!!: 耀斑和巨蟹座DX · 查看更多 »

巴士底日事件

巴士底日事件或巴士底日閃焰是在第23太陽週期靠近太陽極大期的峰值,發生於2000年7月14日的一次巨大太陽閃焰。在活躍區9077產生了一個X5.7級的閃焰,15分鐘之後,高能量的質子轟擊到電離層,引發了S3輻射風暴。這是1989年以來最大的太陽輻射事件 。這次的質子事件比早先,1995的SOHO和1997年的ACE,記錄到的任一事件都要強4倍以上。伴隨著閃焰之後是整個日冕的日冕物質拋射,和在7月15-16日的超級地磁風暴。在7月15日之後幾小時的峰值達到極端強烈的G5等級。 航海家1號和航海家2號也觀測到巴士底日事件,因此它也是在最遠距離被觀測到的太陽風暴。.

新!!: 耀斑和巴士底日事件 · 查看更多 »

巴納德星

巴納德星(英语:Barnard's Star)是一顆質量非常小的紅矮星,位在蛇夫座β星附近,蛇夫座66星的西北側,距離地球僅約6光年遠。美國天文學家愛德華·愛默生·巴納德在1916年測量出它的自行為每年10.3角秒,是已知相對太陽自行最大的恆星。為紀念巴納德的發現,後來稱這顆恆星為巴納德星。巴納德星距離太陽約1.8秒差距(6光年),是蛇夫座內距離我們最近、宇宙中第二接近太陽的恆星系統,也是第四接近太陽的恆星,前三接近太陽的恆星都是半人馬座α系統的成員。儘管它如此的接近地球,但是人類裸眼仍然看不見巴納德星。 由於它相當接近太陽,而且位於容易觀測的天球赤道附近,所以M型矮星巴納德星比任何恆星受到天文學家更多的研究和注意。天文學家的研究曾經聚焦在恆星的特徵、天體測量和推敲系外行星可能存在的極限。雖然這是一顆古老的恆星,天文學家仍然觀測到巴納德星發生過耀斑爆發。 天文學家曾對這顆恆星的一些研究題材發生爭議。從1960年代初至1970年代初長達十年之久,天文學家彼得·范德坎普(Peter van de Kamp)曾聲稱有一顆巨大的氣體行星環繞著巴納德星,一些天文學家也接受他的說法。天文學家後來認為恆星附近可能存在類似地球的小型行星,所以巨大行星存在的可能性就大為降低,范德坎普的主張被推翻。天文學家十分注意這顆恆星,它是無人旅行到鄰近的恆星系統可以快速前往研究的一個目標。 因為巴納德星擁有幾點與眾不同的特徵,所以它成為天文學家相當矚目的恆星。巴納德星是目前所有已知恆星中自行運動最快的恒星,因此有時候也被稱為巴納德「逃亡之星」(Runaway Star),它的自行速度比大熊座的飛行之星快一倍。恒星通常每年的自行速度還不到1角秒,牧夫座大角星自行運動算是比較明顯的,但是一年也不到2角秒,而巴納德星每年的自行運動卻高達10.31角秒。巴納德星距離太陽系只有5.96光年,除了南門二系統(半人馬座α三合星)外,它是距離地球最近的恒星。巴納德星最吸引人的地方是這顆恒星周圍很可能有兩顆大小約等於木星和土星的行星圍繞它公轉,是一個距離地球很近的恆星系。.

新!!: 耀斑和巴納德星 · 查看更多 »

中国厘米分米波频谱日像仪

新一代厘米分米波射电日像仪(英文:CSRH),在厘米分米波段上实现对太阳大气同时以高空间、高时间和高频率分辨率观测的新一代太阳射电望远镜。其对太阳活动的动力学性质进行观测,探测日冕大气,对于太阳物理学研究具有重要作用。CSRH是国家天文台明安图天文基地(MAT)的重要组成部分,位于中国内蒙古锡林郭勒盟正镶白旗明安图镇。项目于2013年底竣工。.

新!!: 耀斑和中国厘米分米波频谱日像仪 · 查看更多 »

事件視界望遠鏡

事件視界望遠鏡(Event Horizon Telescope, EHT)是一個以觀測星系中央超大質量黑洞為主要目標的計畫。該計劃以甚長基線干涉技術(VLBI)結合世界各地的電波望遠鏡,使許多相隔數十萬公里的獨立天線能互相協調、同時觀測同一目標並記錄下數據,形成一口徑等效於地球直徑的虛擬望遠鏡,將望遠鏡的角解析力提升至足以觀測事件視界尺度結構的程度。EHT期望藉此檢驗愛因斯坦廣義相對論在黑洞附近的強重力場下是否會產生偏差、研究黑洞的吸積盤及噴流、探討事件視界存在與否,並發展基本黑洞物理學。 EHT的觀測目標主要為位於南半天球、銀河系中央的超大質量黑洞人馬座A*以及位於北天球的橢圓星系M87星系中央的超大質量黑洞。其中人馬座A*在地球天空中佔的盤面較大,而M87的黑洞則以擁有一道長達5,000光年的噴流為著名特色。為了看透銀河盤面及圍繞在黑洞周圍的物質,EHT將觀測波長設定於1.33毫米,並預計於未來提升至能更精細觀測的0.87毫米。由於連線觀測產生的數據量將大到無法使用網際網路傳輸,各觀測台會於觀測後將儲滿數據的硬碟郵寄至美國馬薩諸塞州的海斯塔克天文台,交由超級電腦運算,並合成單一影像。根據電腦模擬,環繞黑洞的物質發出的光將被黑洞自身質量產生的重力透鏡效應彎曲,在黑洞周圍形成一光環,而光環中央襯托出的圓形剪影便是黑洞的輪廓,也就是事件視界。 2012年,天文學家於美國亞利桑那州首次正式舉辦EHT會議,確立計畫的科學目標、技術計畫和組織架構等。觀測則始於更早的2006年,當時已有三座望遠鏡使用VLBI技術進行連線觀測。多年下來,EHT逐漸從一個鬆散、資金不足的團隊,成長為30多所來自12個國家的大學、天文觀測站等研究單位與政府機構參與的國際合作組織。EHT於2017年4月首次進行為期十天的全球連線觀測,觀測目標為人馬座A*。此次觀測也第一次納入位於智利的阿塔卡瑪大型毫米及次毫米波陣列(ALMA)、南極點的南極望遠鏡等成員。其中ALMA為一關鍵成員,它的加入將EHT的靈敏度提高了十倍。天文學家希望於此次觀測中攝得第一張黑洞剪影的影像。觀測結果預計於2017年底至2018年公布。.

新!!: 耀斑和事件視界望遠鏡 · 查看更多 »

伽馬射線天文學

伽馬射線天文學是指以伽馬射線研究宇宙的天文學分支。伽馬射線是可穿透整個宇宙的電磁波中最高能量的波段,也是電磁波譜中波長最短的部分。 伽馬射線可由太空中的超新星、正電子湮滅、黑洞形成、甚至是放射衰變產生。例如超新星SN 1987A就發射了來自超新星爆炸的放射性產物鈷56釋放的伽馬射線。大多數天體釋放的伽馬射線一般認為並非來自放射衰變,而是和X射线天文学一樣來自加速的電子、電子和正電子作用(但因為能量較高而產生伽馬射線)。.

新!!: 耀斑和伽馬射線天文學 · 查看更多 »

土司空

土司空(英語:Deneb Kaitos或Diphda)是位於鯨魚座的一顆恆星,又稱為鯨魚座β(β Cet)。雖然編號為β,但是土司空其實是鯨魚座最明亮的恆星(鯨魚座α的視星等只有2.54等)。 因為土司空位於夜空中的陰暗角落,所以人們可以很容易的觀察到它的位置。土司空的絕對星等為−0.31等,視星等則為2.02等,因為它距離地球僅96.3光年,所以土司空是距離最近的明亮恆星之一。.

新!!: 耀斑和土司空 · 查看更多 »

地球殊異假說

在行星科學和天體生物學中,地球殊異假說(英語:Rare Earth hypothesis)認為地球上多細胞生物的形成需要不同尋常的天體物理及地質事件和環境的結合。「地球殊異」(Rare Earth)這一詞來自於一本由彼得·瓦爾德(Peter Ward )和唐納德·E·布朗尼(Donald E. Brownlee)所著的《地球殊異:為何複雜生命在宇宙中並不普遍?》(Rare Earth: Why Complex Life Is Uncommon in the Universe,台灣譯名:“地球是孤獨的:從天文物理學、太空生物學、行星科學探索生命誕生之謎”)一書。 地球殊異假說是與卡爾·薩根及法蘭克·德雷克提出的平庸原理恰恰相反的概念。平庸原理認為地球只是位於普通的棒旋星系非異常區域内的一個普通的行星系統中的一顆普通的岩石行星,因此整個宇宙中充斥著複雜生命。瓦爾德等人卻指出像地球、太陽系和我們位於銀河系的區域這樣擁有適宜複雜生命生存的行星、行星系統和星系區域是非常稀少的。.

新!!: 耀斑和地球殊異假說 · 查看更多 »

地磁场

地磁場是源自於地球內部,並延伸到太空的磁場。磁場在地表上的強度在25-65微特斯拉(即0.25至0.65高斯)之間。粗略地說,地磁場是一個與地球自轉軸呈11°夾角的磁偶極子,相當於在地球中心放置了一個傾斜了的磁棒。目前的地磁北極位於北半球的格陵蘭附近,實際上它是地磁場的南極,而地磁南極則是地磁場的北極。地核向外散發熱量時,引起外核中熔融鐵的對流運動,進而產生電流,地磁場即是此電流所致。這種使天體磁場形成的原理,稱為發電機理論。 南北磁極通常位於地理極附近,但其位置在地質時間尺度上可以有較大的變化。這種變化極其緩慢,不足以干預指南針的日常使用。不過,平均每幾十萬年會發生一次地磁逆轉,即南北磁極突然(與地質時間尺度相比較)互相換位。每次逆轉都會在岩石中留下印跡,這對古地磁學研究十分重要。以此所得的數據有助科學家了解大陸和海床的板塊運動。 磁層指的是地磁場在電離層以上的影響範圍。它能夠向太空延伸幾萬公里,並且阻止太陽風和宇宙射線中的帶電粒子損毀地球大氣上層,因此使得阻擋紫外線的臭氧層不致消失。.

新!!: 耀斑和地磁场 · 查看更多 »

刺客信条III

是育碧公司的蒙特利尔工作室開發的一款第三人稱歷史奇幻類遊戲。本作是《刺客教條》主系列的第五部作品兼第三部正統續作。 遊戲的PlayStation 3 和Xbox 360 版本於2012年10月30日在北美發售,而Wii U 和PC 版本則在同年11月發售。共有上下部章节:上部-海爾森·肯威;下部-康纳(拉頓哈給頓)。 本作獲得來自評論家作大多是正面的評論和一個巨大的商業成功,總銷量在全世界超過1200萬份。 及後在2013年10月發佈了《刺客教條IV:黑旗》並延續刺客的故事,該集的主角是《刺客教條III》主角拉通哈給頓的祖父——愛德華‧肯威(Edward Kenway)他是一名在海盜黃金時期(Golden Age of Piracy)活躍於加勒比海地區(Caribbean)的海盜。.

新!!: 耀斑和刺客信条III · 查看更多 »

刺客教條IV:黑旗

)是育碧公司蒙特利爾工作室開發的一款動作冒險歷史奇幻類遊戲。本作是《刺客信条》主系列的第六部作品兼第四款正统續作,亦是《刺客教條III》的前傳。2018年3月8日提供简体中文支持。.

新!!: 耀斑和刺客教條IV:黑旗 · 查看更多 »

刺客教條:啟示錄

《刺客教條:啟示錄》(Assassin's Creed: Revelations)是育碧公司的蒙特利尔工作室開發的一款第三人稱歷史奇幻類遊戲。它支援Microsoft Windows、PlayStation 3和Xbox 360三個平臺。本作是育碧公司2009年遊戲《刺客教條II》及2010年遊戲《刺客教條:兄弟會》的續集,目前已發行在市面上。另於2016年11月17日在PlayStation 4和Xbox One發售與刺客教條II和刺客教條:兄弟會三部曲合併的刺客教條:埃齊歐合輯。2017年7月11日提供简体中文支持。.

新!!: 耀斑和刺客教條:啟示錄 · 查看更多 »

唧筒座

唧筒座(Antlia)是南天星座之一。拉丁語義“泵”;代表氣泵。星座於18世紀經尼可拉·路易·拉卡伊創立,原名為“Antlia Pneumatica”,後由約翰·赫歇爾縮減成現在的名稱。唧筒座所在位置靠近舊星座南船座,唧筒座在北緯49度線以南可視全貌。 唧筒座光芒黯淡,最亮的恆星是疑似變星的橘色巨星唧筒座α,視星等為4.22至4.29。唧筒座S屬交食雙星系統,其亮度會因其中一顆星在另一顆星前方通過而變化。兩顆星的距離非常近,擁有共有包層,所以之後必將融合成一顆。唧筒座內已確知HD 93083和WASP-66存在系外行星,此外星座內還有螺旋星系NGC 2997和唧筒座矮星系。.

新!!: 耀斑和唧筒座 · 查看更多 »

冕 (大氣層)

冕是太陽或其他天體由電漿構成的大氣層,延伸至太空中數百萬公里,在日全食的時候很容易看見,但使用日冕儀隨時都可以看見。在拉丁文中字根corona的意義就是光環。 高溫的日冕呈現特殊的光譜特徵,在19世紀產生了一些爭議,認為有一種早先未知的元素「coronium」。後來,這些光譜的特徵被追蹤對應上了高度電離的鐵(Fe(XIV)),顯示是在溫度超過106 K 的電漿 。 來自冕的光有三種主要來源,雖然所有的都分享相同的空間,但有各自不同的名稱。K-冕(源自德文的kontinuerlich,是"連續"的意思)是被陽光驅散的自由電子創造的,都卜勒致寬使被反射的光球層吸收線完全被遮蔽掉,讓光譜呈現連續而完全看不見吸收線。F-冕(F來自夫朗和斐)是由被陽光彈起的微塵粒子創造的,因為它包含了未加工就能在陽光下看見的夫朗荷斐吸收線,所以可以被觀測到。F-冕延伸到離太陽非常遠的距角時,就會被稱為黃道光。E-冕(E源自輻射這個字)是來自冠冕部分的電漿離子的發射譜線,並且是關於冕區成分的主要訊息來源 。.

新!!: 耀斑和冕 (大氣層) · 查看更多 »

光球

光球是恒星向外輻射出光線的區域。它從天體的表面向內延伸,直到氣體變得不透明的區域,大约相當於光深度(光的減弱距離以自然對數形式表示)2/3的位置。換言之,光球是天體外層對普通的光線透明,光子的平均散射次数小于1的區域。恆星輻射的總能量相當於在該半徑處氣體輻射的總能量。由於恆星沒有固體的表面(除了中子星),光球通常指的就是太陽或恆星可以被看見的視覺表面。這個字的英文源自古希臘的字根φως¨- φωτος/photos和σφαιρος/sphairos,意思就是光和球,事實上就是被觀察到表面發光的球體。.

新!!: 耀斑和光球 · 查看更多 »

玩串真人Show

《玩串真人Show》(Bad Wolf)是英國科幻電視劇《異世奇人》系列1的第12集,於2005年6月11日在英國BBC One播出。本劇的編劇為拉塞爾·T·戴維斯,負責執導。演員方面,除了常設的基斯杜化·艾克斯頓飾演博士和比莉·派佩飾演羅斯·泰勒(Rose Tyler)外,約翰·巴洛曼扮演的傑克·夏尼斯隊長也是主角。 此集講述博士、泰勒和傑克不知何故地被帶到名叫衛星5的太空站,並被迫參加真人秀遊戲,輸掉比賽的人會被化為原子。然而,博士發現這是其天敵戴立克(Dalek)的陰謀,其餘的劇情則在下一集《背水一戰》交代。這集在首播時英國共有681萬人收看,並得到影評家的讚賞。.

新!!: 耀斑和玩串真人Show · 查看更多 »

火星

火星(Mars, 天文符號♂),是離太陽第四近的行星,為太陽系中四顆類地行星之一。西方稱火星為瑪爾斯,是羅馬神話中的戰神;古漢語中則因为它荧荧如火,位置、亮度時常變動讓人無法捉摸而稱之為熒惑。火星在太陽系的八大行星中,第二小的行星,其質量、體積仅比水星略大。火星的直徑約為地球的一半,自轉軸傾角、自轉週期則與地球相當,但繞太陽公轉周期是地球的兩倍。在地球上,火星肉眼可見,亮度可達-2.91,只比金星、月球和太陽暗,但在大部分時間裡比木星暗。 火星大气以二氧化碳为主,既稀薄又寒冷。火星在視覺上呈現為橘紅色是由其地表所廣泛分佈的氧化鐵造成的。火星地表沙丘、砾石遍布且没有稳定的液态水,火星南半球是古老、充满陨石坑的高地,北半球则是较年轻的平原。 火星有兩個天然衛星:火衛一和火衛二,形狀不規則,可能是捕獲的小行星。火星目前有四艘在軌運行的探測船,分別是火星奧德賽號、火星快車號和火星偵察軌道器以及2014年9月22日抵达的MAVEN轨道器,地表還有很多火星車和著陸器,包括兩台火星車:機會號和好奇號,和已經結束任務的精神號和鳳凰號。根據觀測的證據,火星以前可能覆蓋大面積的水。亦觀察到最近十年內類似地下水湧出的現象。 火星全球勘測者則觀察到南極冠有部份退縮。火星快車號和火星偵察軌道器的雷達資料顯示兩極和中緯度地表下存在大量的水冰Water ice in crater at Martian north pole http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html。2008年7月31日,鳳凰號直接於表土之下證實水冰的存在。2013年9月26日,火星探測車好奇號發現火星土壤含有豐富水分,大約為1.5至3重量百分比,顯示火星有足夠的水資源供給未來移民使用。2015年9月證實火星有間歇流動的液態水(液態鹽水)。.

新!!: 耀斑和火星 · 查看更多 »

理查·克里斯多福·卡林頓

查·克里斯多福·卡林頓(Richard Christopher Carrington,1826年5月26日-1875年11月27日)是一位英國的業餘天文學家,他在1859年的天文觀測証明太陽閃焰的存在,並且建議對地球的極光和電器有所影響;而他在1863年的觀測記錄的太陽黑子顯示太陽的較差自轉。.

新!!: 耀斑和理查·克里斯多福·卡林頓 · 查看更多 »

磁层

磁層是一个天体周围、以该天体的磁场为主的地区。地球、木星、土星、天王星和海王星的周围均有磁層。火星仅有局部的磁场,因此不能形成一个磁層。除此之外其它拥有磁场的天体如脉冲星也有磁層。.

新!!: 耀斑和磁层 · 查看更多 »

磁暴

磁暴(geomagnetic storm)是太陽風震波或與地球磁場交互作用所引起的地球磁層擾動。太陽風的磁場與地球磁場交互作用,並將增加的能量轉移到磁層中,導致通過地球磁層的等離子體增加(由磁層內增加的電場驅動),以及磁層和電離層中的電流增加。在磁暴的主要階段,磁層中電流產生的磁力推動原本磁層和太陽風之間的邊界。 造成磁暴的行星際物質擾動可能源自太陽的日冕物質拋射(CME),或是太陽表面弱磁場區域太陽風生成的共轉交互作用區(CIR)。磁暴的頻率隨著太陽黑子週期變動。在太陽極大期,CME導致的磁暴較為常見。太陽表面閃焰與CME次數增加,輻射出X射線、紫外線、可見光及高能量的質子和電子束。而在太陽極小期,則是以CIR導致的磁暴為主。 幾種太空天氣現象往往與磁暴有關,包括:太陽質子事件(SPE);(GIC);干擾無線電和雷達的電離層擾動;導航所用的羅盤顯示異常。磁暴能波及全球,持续达几小时到几天。磁暴发生时會增強電離層的游離化,也會使極區的極光特別絢麗。引發短波通訊特性失常,情况严重时可能使短波通訊完全中断。磁暴時,另外還會產生雜訊掩蓋通訊時的正常訊號,甚至使通訊中斷,也可能使高壓電線產生瞬間超高壓,造成電力中斷。磁暴也會對航空器造成傷害。1989年3月磁暴引起的大地電流擾亂了魁北克幾乎全省的電力配置,並且連美國南方的德克薩斯州都可以見到極光。.

新!!: 耀斑和磁暴 · 查看更多 »

移動迷宮 (電影)

《移動迷宮》(The Maze Runner)是一部2014年美國反烏托邦、科幻、動作及驚悚片,電影由韋斯·波爾執導,改編自詹姆士·達許納於2009年出版的同名小說。此電影為「移動迷宮系列」的第一輯,電影監製包括、、馬蒂·鮑恩(Marty Bowen)和李·史托曼(Lee Stollman),劇本則為、與葛蘭·皮爾斯·邁爾斯(Grant Pierce Myers)負責,並由狄倫·歐布萊恩、卡雅·史葛拉迪奧、艾繆·艾敏、湯瑪士·桑格斯特、李起弘、威爾·普爾特以及派翠西婭·克拉克森主演。故事講述16歲少年湯瑪士(迪倫·奥布莱恩 飾)從一個生鏽的電梯中醒過來,記憶模糊並忘記了自己是何人,只是得知自己與一眾男孩被送往一個神秘的地方—錯綜複雜的迷宮中央,他們不斷試圖在變化多端的迷宮中尋找出路—同時在他們稱之為「迷宮幽地」的地方建立起一個正常運作的社會。 《移動迷宮》的計劃於2011年1月展開,當時福克斯電影工作室與及共同買下詹姆士·達許納小說的電影改編權。電影的主要拍攝於2013年5月13日在路易西安納州的巴頓魯治開始,並於2013年7月12日正式結束。 《移動迷宮》在美國由二十世紀福斯於2014年9月19日發行。影評人認為這部電影比較其他青少年小說改編成電影的拍得更好。電影的票房也相當成功,電影在其首映週末的票房為3,250萬美元,榮登該年9月份最高票房的第7位。電影對比它在$3,400萬美元的製作預算,它在全球的票房收益共賺得超過$3.4億美元。 電影的續集《移動迷宮:焦土試煉》在2015年9月18日於美國上映,而第三輯亦是最後一輯續集的《移動迷宮:死亡解藥》定於2018年1月26日上映。.

新!!: 耀斑和移動迷宮 (電影) · 查看更多 »

移動迷宮:焦土試煉

《移動迷宮:焦土試煉》(Maze Runner: The Scorch Trials)是一部2015年美國科幻、反烏托邦、動作和驚悚電影,電影改編自詹姆士·達許納的同名小說,是《移動迷宮》的續集與「移動迷宮系列電影」的第二輯。電影由韋斯·波爾執導,TS·諾林擔任編劇,並由上輯演員狄倫·歐布萊恩、凱亞·絲柯黛蘭莉歐、湯瑪士·桑格斯特、李起弘和派翠西婭·克拉克森繼續擔任主演外,還新增了配角演員羅莎·薩拉查、雅庫布·洛弗蘭德、吉安卡洛·伊坡托、艾登·吉倫與以及娜塔莉·伊曼紐爾共同出演。 故事緊接延續前集,湯瑪士與迷宮幽地的同伴們剛從強大組織W.C.K.D.的禁錮中逃脫出來,眾人在荒漠及廢棄的城市中奔跑,他們必須要逃避W.C.K.D.的士兵及面對危機四伏的荒漠。拍攝於2014年10月27日在新墨西哥州的阿布奎基開始,並於2015年1月27日正式結束。 《移動迷宮:焦土試煉》於2015年9月9日開始在全球特定的地區以2D、3D、4DX及巴克公司作大屏幕放映,在美國正式放映是由二十世紀福斯於2015年9月18日在2D及大屏幕影院發行。電影原本會有IMAX推出版本,但因《聖母峰》已預定全球的所有的IMAX銀幕一直到《走鋼索的人》,因而取消。2015年9月9日於台灣上映。2015年9月10日於香港上映。電影在全球首周獲得了3030萬美元的票房佳績,成為9月最賣座的電影。電影的評價褒貶不一,有些影評人稱讚它的動作場面和演出更勝前集,而有些人則認為它缺乏故事和人物的發展性。.

新!!: 耀斑和移動迷宮:焦土試煉 · 查看更多 »

空间风化

太空風化是所有暴露在嚴苛的太空環境中的天體表層所經歷的一系列变化過程的总称。月球、水星、小行星、彗星等沒有大氣層的天體,表層會受到宇宙射線和太陽輻射的照射、太陽風粒子的轰击、大大小小的隕石和微流星體的撞击。太空風化的過程是影響天體表層物理和光學性質的重要因素。因此了解太空風化的作用有助于正确解釋观测数据。.

新!!: 耀斑和空间风化 · 查看更多 »

第10太陽週期

10太陽週期是從1755年開始紀錄太陽黑子以來的第10個太陽週期Kane, R.P. (2002).

新!!: 耀斑和第10太陽週期 · 查看更多 »

等离子体

--(又稱--)是在固態、液態和氣態以外的第四大物質狀態,其特性與前三者截然不同。 氣體在高溫或強電磁場下,會變為等離子體。在這種狀態下,氣體中的原子會擁有比正常更多或更少的電子,從而形成陰離子或陽離子,即帶負電荷或正電荷的粒子。氣體中的任何共價鍵也會分離。 由於等離子體含有許多載流子,因此它能夠導電,對電磁場也有很強的反應。和氣體一樣,等離子體的形狀和體積並非固定,而是會根據容器而改變;但和氣體不一樣的是,在磁場的作用下,它會形成各種結構,例如絲狀物、圓柱狀物和雙層等。 等離子體是宇宙重子物質最常見的形態,其中大部分存在於稀薄的星系際空間(特別是星系團內介質)和恆星之中。.

新!!: 耀斑和等离子体 · 查看更多 »

粒子輻射

粒子輻射是輻射的能量,意思是快速移動的次原子粒子。如果粒子朝著同的方向運動,就類似一束光,所以粒子輻射也被稱為粒子束。 由於波粒二象性,所有運動的粒子也都有波動性。高能量的粒子較易呈現粒子性,而低能量的粒子較容易呈現波動性。.

新!!: 耀斑和粒子輻射 · 查看更多 »

红缨-6便携式防空导弹

飞弩-6(FN-6,FN为源自官方翻译的拼音「飞弩」(Fei Nu)的类别代码,又称:红缨-6(HN-6))是一种由中国精密机械进出口总公司(CNPMIEC)所研制、生产和对内外销售的第三代被动式红外线导引單兵便携型防空导弹系统,亦是中国在国际市场上提供最先进的表面对空导弹,发射72毫米防空导弹。它是特别设计旨在可以打击低空飞行的目标,例如直升机和低空作战飞机。它的最大有效射程为6公里(6,561.68码,19,685.04英尺),而最大巡航高度为3.5公里(3,827.65码,11,482.94英尺)。飞弩-6除了在中国人民解放军(PLA)服役外,亦还用作出口。中国亦已经以飞弩-6为基础研发了一系列其他便携式防空导弹系统,如红缨和飞鹰系列,以及加装其他车辆上的近程防空系统,如飞弩和FB系列。.

新!!: 耀斑和红缨-6便携式防空导弹 · 查看更多 »

约翰·霍华德·德林杰

约翰·霍华德·德林杰(John Howard Dellinger)是发现了太阳耀斑导致短波无线电信号衰减的美国著名电信工程师。 1886年7月3日,德林杰出生在美国俄亥俄州克利夫兰,曾就读于凯斯西储大学,1908年获乔治华盛顿大学学士学位,1913年获普林斯顿大学博士学位。1907年-1948年,德林杰作为一名物理学家工作于国家标准技术研究所,先后担任过无线电部门主管和中央无线电传播实验室主任。从1928年至1929年出任联邦无线电委员会主任工程师,并担任美国商务部无线电咨询委员会代表(1922年-1948年)。 1934年,他被任命为国际无线电科学联盟副主席,1941年任航空无线电技术委员会主席,1947年为无线电服务技术委员会主席以及1950年国际无线电咨询委员会第六无线电传播研究组主席。 1932年,德林杰被乔治华盛顿大学授予科学博士头衔。为表彰他对无线电波传播与其他自然现象间关系的研究发现以及对无线电测量及标准发展作出的贡献和在国际会议上引领世界电信合作所起的作用,1938年电气电子工程师学会授予他国际电子电气工程学会荣誉奖章。月球上的德林杰环形山就是以他的名字命名。.

新!!: 耀斑和约翰·霍华德·德林杰 · 查看更多 »

羅斯128b

羅斯128b(Ross 128 b)是一顆已確認存在的太陽系外行星,其體積與地球近似,被認為是岩石組成的類地行星。該行星的母恆星為紅矮星羅斯128,並且位於母恆星適居帶內部。羅斯128b是至今發現的距離地球第2近的潛在適居行星,距離地球約11光年.

新!!: 耀斑和羅斯128b · 查看更多 »

电离层

电离层是地球大气层被太阳射线电离的部分,它是地球磁层的内界。由于它影响到无线电波的传播,它有非常重要的实际意义。.

新!!: 耀斑和电离层 · 查看更多 »

無限的未知

《無限的未知》(無限のリヴァイアス)是日本動畫,於1999年10月6日-2000年3月29日東京電視台放送。全26話。.

新!!: 耀斑和無限的未知 · 查看更多 »

白光耀斑

白光耀斑是太阳耀斑中极为罕见的一种,由于它能在白光照片中看到,故名。白光耀斑的持续时间一般只有几分钟,而且是出現時會緊鄰著巨大的黑子群(肉眼可見)。 第一个白光耀斑是在1859年的时候,英国天文爱好者卡林顿发现的。由于其极为罕见,全世界记录到这一现象的次数并不多,而拍摄到光谱的就更少了。 Category:太阳活动.

新!!: 耀斑和白光耀斑 · 查看更多 »

隼鸟号

鸟号(日文:はやぶさ,開發名稱為第20號科學衛星MUSES-C)偶爾也被譯為游隼號、獵鷹號或隼鷹號,或是非正式的被稱為隼鳥1號,是日本宇宙航空研究開發機構的小行星探测计划。这项计划的主要目的是将隼鳥號探测器送往小行星25143(又名「糸川」;Itokawa),采集小行星样本并将采集到的样本送回地球。 隼鸟号原预计于2007年6月返回地球,但由於懷疑探測器的燃料洩漏,延後3年後於2010年6月13日日本時間22時51分返回地球,本體於大氣層燒毀,而內含樣本的隔熱膠囊與本體分離後在澳大利亚內陸著陸。 隼鸟号在宇宙中旅行了七年,穿越了約六十億公里的路程。這是人類第一次對地球有威脅性的小行星,進行物質蒐集的研究,也是第一個把小行星物質帶回地球的任務。是吉尼斯世界纪录认定的「世界上首架从小行星上带回物质的探测器」及「著陸目標最小(糸川小行星全長僅約 500 米)的探測器.

新!!: 耀斑和隼鸟号 · 查看更多 »

蟹狀星雲

蟹状星云(M1,NGC 1952或金牛座 A)是位于金牛座ζ星(天關)东北面的一个超新星残骸和脉冲风星云。蟹状星云距地球约6,500光年(2,000秒差距),直径达11光年(3.4秒差距),并以每秒约1,500公里的速度膨胀。它是银河系英仙臂的一部分。 该星云由约翰·贝维斯于1731年发现,它对应于中国、阿拉伯和日本天文学家於公元1054年记录的一次超新星爆发(编号SN 1054,中国称天关客星)。1969年天文学家发现星云的中心是一颗脉冲星,它的直径约28–30公里,每秒自转30.2次,并发射出从γ射线到无线电波的宽频率范围电磁波。它也是首顆被确认为历史上超新星爆发遗迹的天体。 蟹状星云的X射线和γ射线辐射能量超过30 keV,最高可达10 TeV,而且非常稳定,因此天文学家将蟹状星云看成是宇宙中最稳定的高能辐射源之一,并将其作为一种标准来测量宇宙其他輻射源的能量。此星云是一个很好的辐射源,通过其他天体的掩星可以研究它與其他的天體。20世纪50和60年代时,天文学家曾借助穿过日冕的蟹状星云辐射对太阳日冕进行密度和成分测定。2003年,土卫六阻挡了蟹状星云的X射线辐射,天文学家借此机会测量土卫六的大气层的厚度。.

新!!: 耀斑和蟹狀星雲 · 查看更多 »

莫爾頓波

莫爾頓波是大尺度的太陽日冕激波在色球上的記號,有如在太陽上發生的一種海嘯,它們是由太陽閃焰生成的。它們的名稱來自美國天文學家蓋亞·莫爾頓,他在加利福尼亞州伯班克的洛克希德太陽天文台工作時,在1959年注意到這種現象,在間時攝影中發現色球中有巴耳末α躍遷的亮光。 幾十年來有一些後續的研究,然後在1995年發射的太陽和太陽風層探測器 (SOHO) 觀測到日冕上的波動造成莫爾頓波,使莫爾頓波再度成為研究的主題。(SOHO的遠紫外線影像望遠鏡儀器發現另一種不一樣的波,稱為'EIT波') 。真實的莫爾頓波 (aka快速模式的磁流體動力學波也被日地關係天文台的兩艘太空船證實。他們在2009年2月觀察到伴隨著日冕物質拋射,速度為每秒250公里,高達100,000公里的熱磁性電漿。 莫爾頓波傳播的速度在每秒500-1500公里,並依據與電波II型爆發相關的著名Yutaka Uchida理論,和色球產生交互作用發生冠狀磁流體動力學的快速模式弱衝激波。莫爾頓波主要是以Hα波段來觀測。.

新!!: 耀斑和莫爾頓波 · 查看更多 »

蝎虎座EV

蝎虎座EV(又称格利泽873、HIP 112460)是蝎虎座中一颗暗淡的红矮星,距离太阳系大约16.5光年。它是那个天区距离太阳最近的恒星,但是视星等只有10等,在双筒望远镜中只能勉强看到。蝎虎座EV是一颗光谱分类为M3.5的耀星,会释放出X射线。 2008年4月25日,美国宇航局的雨燕卫星观测到了蝎虎座EV一次创纪录的耀斑爆发。这个耀斑比已知最强的太阳耀斑要强数千倍。不过蝎虎座EV离地球远得多,因此这次耀斑爆发远不如太阳耀斑那样明亮。这次耀斑如果正好处于可观测的夜空中,就能用肉眼观察到。这是除了太阳以外最亮的耀斑爆发。 蝎虎座EV比我们的太阳年轻得多,并且仍然在高速旋转。高速的自转和内部的热对流使得它的磁场比太阳强得多。据信,强磁场对于产生如此强烈的耀斑有一定影响。.

新!!: 耀斑和蝎虎座EV · 查看更多 »

行星際塵雲

行星際塵雲(Interplanetary dust cloud)是瀰漫在太陽系的行星空間與其它行星系空間的宇宙塵(漂浮在太空中的小顆粒)。它已經被研究了許多年,以了解其本質、起源和大天體之間的關係。 在我們的太陽系,行星際塵埃粒子不僅散射陽光(稱為"黃道光",因為它們被侷限在黃道平面),也產生熱輻射,這是夜晚的天空中5至50微米波長的主要來源(Levasseur-Regourd, A.C. 1996)。這些在地球附近輻射出紅外線特徵的顆粒,典型的大小在50至100微米(Backman, D., 1997)。這些星際塵埃的總質量相當於一顆半徑15公里的小行星(密度大約是2.5公克/公分3)。.

新!!: 耀斑和行星際塵雲 · 查看更多 »

费米伽玛射线空间望远镜

費米伽瑪射線太空望遠鏡(Fermi Gamma-ray Space Telescope,原名Gamma-ray Large Area Space Telescope, GLAST,大面積伽瑪射線太空望遠鏡)是在地球低軌道的伽馬射線天文學太空望遠鏡。此望遠鏡是用來進行大面積巡天以研究天文物理或宇宙論現象,如活躍星系核、脈衝星、其他高能輻射來源和暗物質。另外,該衛星搭載的伽瑪射線爆監視系統(Gamma-ray Burst Monitor, GBM)可用來研究伽瑪射線暴。 GLAST在格林尼治標準時間2008年6月11日16:05由Delta II 7920-H火箭發射。本任務是由美國國家航空暨太空總署、美國能源部、德國、法國、義大利、日本、瑞典政府機關聯合執行。NASA宣布2008年8月2日公開徵求GLAST一個可以「讓大眾注意與喚起對伽馬射線天文學和高能天文學重視」的新名字。.

新!!: 耀斑和费米伽玛射线空间望远镜 · 查看更多 »

超人

超人(Superman) 是一名出現於DC漫畫的虛構超級英雄角色,同時普遍也被認為是美國的文化偶像Daniels (1998), p. 11.

新!!: 耀斑和超人 · 查看更多 »

超人前传 (第三季)

《超人前傳》(Smallville)是美國WB電視台播出的電視劇,講述氪星人早年生活中的經歷及冒險。該劇由與主創,第三季的首集《放逐》(Exile)於2003年10月1日首播,季終集《承諾》(Covenant)則於2004年5月19日播出,全季共包含22集。在第三季中,克拉克與他的生父喬·艾爾賦予他的使命展開纏鬥,萊克斯與李涅的爭鬥愈鬧愈大。克拉克的祕密開始影響彼得,而克拉克與拉娜的關係則陷入了膠著。第三季的主要演員包含湯姆·威靈、克莉斯汀·克魯克、麥可·羅森巴姆、、艾莉森·麥克、、與約翰·施奈德等人。 該季中出現了數位DC漫畫的角色,如與派瑞·懷特等。有別於前兩季的播出時間(每個星期二的下午9點),第三季改至每個星期三的下午8點播出。第三季的收視表現較上一季差,平均每集皆有496萬人收看,而上一季則是630萬人。該季在根據尼爾森收視率列出的收視人次排名中名列第141名,遜於上一季的第113名。第三季的DVD於2004年11月16日發布。.

新!!: 耀斑和超人前传 (第三季) · 查看更多 »

超級閃焰

超級閃焰是在像我們太陽的恆星上可以觀察到的非常強烈的爆炸,它所產生的能量是典型太陽閃焰的百萬倍或更高的水準。有人認為 這種噴發可能是恆星磁場與一顆行星,推斷類似於木星,的磁場交互作用產生的。.

新!!: 耀斑和超級閃焰 · 查看更多 »

过电压

过电压指的是电路中一处或多处的电压超出了其设计的最高值。按照持续时间不同,可以分为短时的脉冲和长时间的浪涌。 电力和电子设备一般都被设计成在一个特定的电压下工作。如果提供的电压超出设计的极限,轻则可能会损坏设备,重则会导致设备起火、爆炸。.

新!!: 耀斑和过电压 · 查看更多 »

范艾倫探測器

范艾倫探測器(英文:Van Allen Probes)原名為輻射帶風暴探測器(英文:Radiation Belt Storm Probes,縮寫:RBSP)是兩艘用來研究環繞地球的范艾倫輻射帶的自動控制太空船。這是NASA指揮的范艾倫探測任務,屬於與恆星共存計畫中的一部分。 對瞭解輻射帶的環境和它的變異性,以研究太空船的操作、系統設計和派遣與規劃太空人的安全領域和實際的應用有其重要性。這兩艘太空船於2012年8月30日發射。.

新!!: 耀斑和范艾倫探測器 · 查看更多 »

航天

航天指与研究和探索外层空间有关的领域,航天器在太空的航行活动。科学界一般把太阳系内的航行活动称为“航天”,而把太阳系外的航行活动称为“航宇”。 按航天器探索、开发和利用的对象划分,航天包括环绕地球的运行、飞往月球的航行、飞往行星及其卫星的航行、星际航行(行星际航行、恒星际航行)。按航天器与探索、开发和利用对象的关系或位置划分,航天飞行方式包括飞越(从天体近旁飞过)、绕飞(环绕天体飞行)、着陆(降落在天体上面)、返回(脱离天体、重返地球)。 执行军事任务(具有军事目的)的航天活动,称为军用航天;执行科学研究、经济开发、工业生产等民用任务(具有非军事目的)的航天活动,称为民用航天;执行商业合同任务(以营利为目的)的航天活动,成为商业航天。有人驾驶航天器的航天活动,称为载人航天;没有人驾驶航天器的航天活动,称为不载人航天。 航天的主要目的是太空探索,其商业用途主要是卫星通讯,也有近来兴起的太空旅游。其他非商用的用途包括星空观测,间谍卫星和地球观测。.

新!!: 耀斑和航天 · 查看更多 »

與太陽有關的條目

與太陽有關的條目 與太陽有關的條目包括:.

新!!: 耀斑和與太陽有關的條目 · 查看更多 »

阿爾西亞山

阿爾西亞山(Arsia Mons)是火星上的巨大盾狀火山,塔爾西斯三座火山之一,東北邊是帕弗尼斯山和艾斯克雷爾斯山, 而全太陽系最高的山:奧林帕斯山就在西北邊。命名取用自喬范尼·斯基亞帕雷利的火星地圖,源自傳說中的羅馬森林阿爾西亞森林(Arsia Silva)。.

新!!: 耀斑和阿爾西亞山 · 查看更多 »

薩加莫爾山電波天文台

薩加莫爾山電波天文台是位於麻塞諸塞州漢彌爾敦的一個太陽電波觀測台,每天都對太陽進行觀測以獲得科學性的資料。它是電波太陽望遠鏡網路(Radio Solar Telescope Network,RSTN)的主要元件。.

新!!: 耀斑和薩加莫爾山電波天文台 · 查看更多 »

葛羅姆布里吉1830

葛羅姆布里吉1830是在大熊座內的一顆恆星。.

新!!: 耀斑和葛羅姆布里吉1830 · 查看更多 »

色球

色球或色球層(字義就是有顏色的球)是太陽大氣層主要三層的第二層,厚度大約2,000公里,位於光球層的上方和過渡區的下方。 色球層的密度相當低,它起始處,也就是色球層的底部,密度只有光球的10−4倍;相較於地球的大氣層,更只有10−8。這使得它通常無法看見,只有在日全食的短暫時間可以看見它展現出略帶紅色的色調,顏色介於紅色和粉紅色之間 。 然而,若沒有特殊的設備,因為光球層壓倒性的明亮效果,通常是無法看見色球層。 色球層的密度隨著與太陽中心的距離增加而降低,從每立方公分1017顆微粒呈指數下降,或從大約到最外的邊界處為。溫度從內側邊界6,000K 到最低處大約是 3,800K,然後向外增加至外側與日冕過渡區交界處的溫度大約是35,000K。 圖1.呈現色球層的溫度和密度隨距離變化呈現的趨勢。 除了太陽,人類也觀察過其它恆星的色球層。.

新!!: 耀斑和色球 · 查看更多 »

色球-日冕过渡层

色球-日冕过渡层是从太阳的光球层向上大约2000千米的高度向外延伸1000千米左右的区域,这个区域反映了太阳大气物理状态的急剧变化。在这个区域会发生一种称为耀斑的局部辐射突然增加的太阳活动。 Category:恒星 Category:太阳.

新!!: 耀斑和色球-日冕过渡层 · 查看更多 »

電離層-熱成層風暴探測

電離層-熱成層風暴探測 (I-TSP)是NASA將要進行研究電離層和熱成層的計畫。這個任務是與恆星共存計畫的一部分,也是對地球空間任務的第二部份。第一個任務是在2012年發射的范艾倫探測器。.

新!!: 耀斑和電離層-熱成層風暴探測 · 查看更多 »

耀星

耀星是一種變星,它可以不可預知的在數分鐘內戲劇性的急遽增光,有時在幾分鐘內的改變會大於幾個星等以上,並持續幾分鐘到幾小時後又慢慢復原。它被認為與太陽閃焰類似,是由於在恆星大氣層內的磁重聯。亮度的增加跨越了整個光譜,從X射線到無線電波。第一批耀星(天鵝座V1396和顯微鏡座AT) 是在1924年發現的;然而,最著名的耀星是在1948年發現的鯨魚座UV 。如今,相似的耀星在變星目錄上,像是變星總表都被分類為鯨魚座UV型變星(使用上縮寫為UV)。耀斑可以隔幾天就發生 ,或是頻率非常低,像巴納德星。 雖然最近的研究表明質量更小的棕矮星也可能發生閃焰,但大多數的耀星都是暗淡的紅矮星。質量更大的獵犬座RS型變星(RS CVn)已知也是耀星,但據了解這些閃焰是由聯星系統中的伴星造成的磁場糾纏誘發的。此外,也觀察到9顆類似太陽的恆星曾經歷閃焰的事件。曾經有建議指出在類似RS CVn變星誘發閃焰的機制,是有看不見的,大小類似木星的行星,在一個緊密的軌道上繞著恆星運轉。目前在太陽系附近已發現近100顆耀星。.

新!!: 耀斑和耀星 · 查看更多 »

虹膜炎

虹膜炎(Iritis)是一種形式的前葡萄膜炎,指的是發炎的虹膜的眼睛。發病時通常只發生在一眼。.

新!!: 耀斑和虹膜炎 · 查看更多 »

K2-155d

K2-155d是一顆環繞恆星K2-155的岩石質太陽系外行星,屬於超級地球。K2-155d是紅矮星K2-155已知3顆行星中距離母恆星最遠者。該行星是任職於東京工業大學的日本天文學家平野照幸發現的15顆系外行星的其中一顆。發現K2-155d的證據來自克卜勒太空望遠鏡延伸任務(K2巡天)的觀測資料。分析結果顯示該行星可能位於母恆星的適居帶,並且表面是可讓液態水存在的環境。.

新!!: 耀斑和K2-155d · 查看更多 »

LHS 1140

LHS 1140是一颗位于鲸鱼座的红矮星,有一颗超级地球LHS 1140b围绕其公转。「LHS」是Luyten Half-Second星表的縮寫,該星表收錄每年自行量超過半個角秒的恆星。 LHS 1140b这颗超级地球位于適居帶,质量约为地球的6.7±1.8倍,半径约为地球的1.4±0.1倍,由此推算其密度约为地球的2.3±0.6倍。並因為該行星有凌星現象,讓天文學家得以觀測它的大氣層。 LHS 1140距离地球约39光年,形成于50亿年前,质量约为太阳的15%,自转周期为130天,没有观测到耀斑现象。其行星LHS 1140b的公转半径约为0.09个天文单位,大约每25日,公转且通过LHS 1140前一次。 LHS 1140b是由MEarth計劃發現,並以高精度徑向速度行星搜索器(HARPS)量測出徑向速度。.

新!!: 耀斑和LHS 1140 · 查看更多 »

TRAPPIST-1

TRAPPIST-1,即 2MASS J23062928-0502285,是一顆表面溫度極低的超冷紅矮星,距離地球約,天球上位於寶瓶座。2017年2月,天文學家在該恆星周圍發現7顆類地行星,是已知行星系統中擁有次多類地行星者,僅次於太陽和克卜勒90。.

新!!: 耀斑和TRAPPIST-1 · 查看更多 »

WISEP J190648.47+401106.8

WISEP J190648.47+401106.8(簡稱為W1906+40)是一顆L型矮星。在2015年,它被證實在表面上有類似木星大紅斑大小的風暴。 這個風暴大約每9小時繞行恆星一周,並且至少在2013年就已經觀測到這個風暴的存在。 這顆恆星距離地球53光年,它的本質亮度只有太陽的0.0002(10−3.67±0.03L⊙),半徑是木星的0.9,表面溫度為2,038℃。這顆恆星有明顯的閃焰(耀斑)發射。 距離地球 53.3 (+1.17, -1.11)光年。.

新!!: 耀斑和WISEP J190648.47+401106.8 · 查看更多 »

X射线天文学

X射线天文学是以天体的X射线辐射为主要研究手段的天文学分支。X射线天文学中常以电子伏特(eV)表示光子的能量,观测对象为0.1keV到100keV的X射线。其中又将0.1keV-10keV的X射线称为软X射线,10keV-100keV称为硬X射线。由于X射线属于电磁波谱的高能端,因此X射线天文学与伽玛射线天文学同称为高能天体物理学。 宇宙中辐射X射线的天体包括X射线双星、脉冲星、伽玛射线暴、超新星遗迹、活动星系核、太阳活动区,以及星系团周围的高温气体等等。由于地球大气层对于X射线是不透明的,只能在高空或者大气层以外观测天体的X射线辐射,因此空间天文卫星是X射线天文学的主要工具。.

新!!: 耀斑和X射线天文学 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 耀斑和恒星 · 查看更多 »

恆星磁場

恆星磁場是恆星內部有傳導力的電漿運動產生的磁場。這種運動是經由對流產生的,是一種包含物質有形運動的能量傳輸。地區性的磁場會對電漿產生作用力,在密度沒有可以比較的增益下,有效的增加壓力。因此被磁化的地區相對於其它的電漿上升,直到抵達恆星的光球。這將在恆星的表面創造出星斑和冕圈的相關現象。.

新!!: 耀斑和恆星磁場 · 查看更多 »

恆星質量流失

恆星質量流失是在一些大質量恆星上觀測到的現象,在此一事件的發生機制會造成恆星大部分的質量被拋射出去;或是在聯星系統中的一顆恆星質量逐漸流失至它的伴星或是星際空間中。.

新!!: 耀斑和恆星質量流失 · 查看更多 »

正義聯盟:末日審判

《正義聯盟:末日審判》(Justice League: Doom)是2012年的一部录影带首映的DC漫畫的超級英雄動畫電影。該片的演員取於DC动画宇宙和《綠光戰警:翡翠騎士》。這部電影是獻給已去世的Dwayne McDuffie,其內容正是生前的他所撰寫的。.

新!!: 耀斑和正義聯盟:末日審判 · 查看更多 »

毫微閃焰

毫微閃焰是出現在日冕,太陽外層的大氣層,的非常小的閃焰。 古德 (Gold) 是最早提出的微閃焰的假說,嘗試用來解釋日冕的加熱,然後經尤金·帕克繼續發展。 依據帕克的說法,在磁重聯的事件中產生毫微閃焰,將儲存在太陽磁場中的能量轉換至電漿的運動。電漿運動 (如同流體運動) 發生的尺度非常的小,很快就會被湍流清除,然後產生黏度。在這樣的方式下,能量很快地轉化成熱,並且經由自由電子沿著毫微閃焰發生地點鄰近磁力線傳導。 為了在1"x 1"的區域內產生非常高熱的X射線輻射,每20秒鐘必須產生1017焦耳的能量,並且在105 x 105公里2的活躍區域內,每秒要發生1000個毫微閃焰。 這一理論的基礎來自大的閃焰排放和一系列許多微小的毫微閃焰並沒有明顯的區別。.

新!!: 耀斑和毫微閃焰 · 查看更多 »

比邻星

比鄰星或毗鄰星(Proxima Centauri)位於半人馬座,是半人馬座α三合星的第三顆星,依拜耳命名法也稱為半人馬座α星C,是距離太陽最近的一顆恆星(4.22光年),恆星分類屬於紅矮星。 它是由天文學家羅伯特·因尼斯于1915年在南非發現的,當時他是擔任約翰尼斯堡聯合天文台的主管。.

新!!: 耀斑和比邻星 · 查看更多 »

沃夫1061

沃夫1061(蛇夫座V2306)是一颗光譜型M型的紅矮星,位于蛇夫座中。它距离太阳相对较近,只有13.8光年。它的自行较大,達到每年1.2角秒。和許多紅矮星一樣的是,它的自轉週期可能長達100日以上,雖然精確週期仍難以精確量測。沃夫1061是非常穩定的恆星,並且沒有明顯的星斑或耀斑等表面活動。至今尚未发现沃夫1061有任何异常的光谱学特征。該恆星最早於1919年由德國天文學家馬克斯·沃夫出版的高自行暗星星表中被收入,並編為第1061顆恆星。.

新!!: 耀斑和沃夫1061 · 查看更多 »

湯馬士·戈爾德 (天文學家)

湯馬士·戈爾德(Thomas Gold,)是一位生於奧地利的天文物理學家,他曾擔任康乃爾大學天文學教授、美國國家科學院院士、皇家學會院士。戈爾德是1950年初提出現已幾乎被廢棄的宇宙穩恆態理論的三位年輕科學家之一。戈爾德的研究是跨學科的,涉及生物物理學、天文學、航空航天工程和地球物理學。.

新!!: 耀斑和湯馬士·戈爾德 (天文學家) · 查看更多 »

月球背面

月球背面是月球永遠背對地球的那一面。月球背面的第一張影像由前蘇聯的月球3號太空船在1959年拍攝,而人類直到1968年的阿波羅8號任務環繞月球時,才直接用眼睛看見月球背面。月球背面的地形主要为一大堆起伏不平的撞擊坑,如太陽系第二大的撞擊坑,南極的南極-艾特肯盆地,而平坦的月海则相對較少。在月球背面,來自地球的電波干擾會被遮蔽,因而有学者建議在月球背面安置一架大功率電波望遠鏡。.

新!!: 耀斑和月球背面 · 查看更多 »

月球殖民

月球殖民是一種人類永久居住在月球的構想。科幻小說作家與太空探測的支持者經常將月球視為人類從地球進行太空探索後,所必然產生的殖民地區。 人類在地球以外的天體殖民常是科幻小說的主題之一。隨著地球人口增加與科技進步,太空殖民的提議也被廣泛的討論與爭辯。因為月球是距離地球最近的天體,所以也被視為是首要的候選地區。.

新!!: 耀斑和月球殖民 · 查看更多 »

戴立克的進化

《戴立克的進化》(Evolution of the Daleks)是英國科幻電視劇《異世奇人》系列3的第5集,於2007年4月28日在BBC One播放。這集的編劇是,並由執導。在演員方面,除了固有的大衛·田納特飾演博士和費馬·阿吉曼扮演的瑪莎·鐘斯外,出演戴立克人格拉斯的也有很重的戲份。 這集繼承《戴立克在曼哈頓》,講述戴立克試圖通過帝國大廈將所有人類改造成其同類,在博士和鐘斯的合作下,眾人成功阻止戴立克的陰謀。這集最終共吸引697萬人收看,評價以「不過不失」為主。.

新!!: 耀斑和戴立克的進化 · 查看更多 »

日冕大量抛射

日冕物質拋射 (coronal mass ejection,CME)是太陽風和磁場突然噴發大量物質至太陽的日冕之上或進入行星際空間中。 日冕物質拋射往往與其他形式的太陽活動連結在一起,最引人注目的是閃焰,但並沒有因果關係。大多數的拋射起源於太陽的表面,像是與頻繁的閃焰相關聯的太陽黑子。在接近太陽極大期時,每天大約有三次的日冕物質拋射,而在太陽極小期,每五天也會有一次的日冕物質拋射。.

新!!: 耀斑和日冕大量抛射 · 查看更多 »

数量级 (能量)

本頁焦耳為單位,按能量大小列出一些例子,以幫助理解不同能量的概念。.

新!!: 耀斑和数量级 (能量) · 查看更多 »

1859年太陽風暴

1859年太陽風暴,是所謂的太陽超級風暴,或是卡靈頓事件,是在有歷史紀錄以來最強大的太陽風暴,它發生在第10太陽週期。.

新!!: 耀斑和1859年太陽風暴 · 查看更多 »

1989年3月磁暴

1989年3月磁暴是發生在第22太陽週期,造成魁北克水力發電廠系統瓦解的一個強烈磁暴。.

新!!: 耀斑和1989年3月磁暴 · 查看更多 »

2003年11月

2003年11月的新闻事件: 请参看:.

新!!: 耀斑和2003年11月 · 查看更多 »

2012年現象

2012年預言或2012年現象(2012 phenomenon)是一個關於末世論的預言、信仰或傳說、謠言,宣稱美洲的玛雅文明中的玛雅曆長達5,126年週期的結束,預言了地球、世界和人類社會在公元2012年12月21日之時前後數天之內將會發生全球性的災難性變化。此說法與太阳風暴、尼比魯碰撞、地球磁极反转、時間波歸零理論、网路机器人工程的预言等謠言結合,而成為2012年「世界末日說/人類滅亡說/人類重生說」。.

新!!: 耀斑和2012年現象 · 查看更多 »

993年

没有描述。

新!!: 耀斑和993年 · 查看更多 »

重定向到这里:

太陽耀斑太陽閃焰恆星耀斑閃焰

传出传入
嘿!我们在Facebook上吧! »