徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

稀有气体

指数 稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

160 关系: 基态原子电子组态列表原子原子半径卤素单质吸收光谱学同位素列表太阳威廉·拉姆齐主族元素市售化学品列表三氯化钒一氢化铁一溴化碘亨利定律亨利·卡文迪什二叠纪-三叠纪灭绝事件二氟化氪二氧化碳介電質伦敦大学学院低温物理学德米特里·伊万诺维奇·门捷列夫保罗·埃米尔·勒科克·德布瓦博德兰土衛六大氣層土星大气进入器化合价化合物化学史化学年表化学序化學元素化學元素豐度價電子分子單原子氣體冥古宙冷却剂冷阴极计数管内能准分子激光ⅧA族八隅體規則六氟化氙兰纳-琼斯势共价键元素周期律元素周期表固体物理学四氟一氧化氙...四氟化氙四氧化氙四氯化钛CPK配色火星水文球床反應堆球粒隕石理想气体状态方程碱金属磁化強度离子离子键科普利獎章稀有氣體性質表稀有气体化合物空间风化空气第1周期元素第2周期元素第3周期元素第4周期元素第5周期元素第6周期元素第7周期元素第8周期元素等离子体等离子灯等離子顯示屏約翰·斯特拉特,第三代瑞利男爵绝热过程甲烷电子亲合能电负性焊接相对论量子化学盖革计数器聲致發光联合制碱法非线性光学非金属元素非活性氣體行星際塵雲街燈角黄素高贵气体诺贝尔化学奖得主列表贵重气体超原子超价分子范德華方程式胡戈·埃德曼能量均分定理鈍氣藍雷射闪光灯钠灯铬酸铍自然长寿命裂变产物鉀-氬年代測定法零族元素NFPA 704P区元素P軌域S-過程X射线抗腐蚀金属武钢集团氢化物氣體放電燈氦族气体游离态溅射木星木星大氣層月球環形山列表 (R-S)月球隕石有限位勢壘惰性氣體海爾-博普彗星族 (化学)无极灯扩展元素周期表扫描电子显微镜普朗特数晶体0號元素12族元素18电子规则18族3208a族 扩展索引 (110 更多) »

基态原子电子组态列表

这是一个关于基态电中性原子的电子组态──即原子核外电子排布方式的列表。此列表按照原子序数的递增顺序进行排列,列表表头由左至右依次为原子序数、元素名称和由1至7的电子层数。.

新!!: 稀有气体和基态原子电子组态列表 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 稀有气体和原子 · 查看更多 »

原子半径

原子半径通常指原子的尺寸,并不是一个精确的物理量,并且在不同的环境下数值也不同。 一个特定的原子的半径值和所选用的原子半径的定义相关,而在不同的环境下给原子半径不同定义比统一的定义更合适。 术语原子半径本身就有疑问:可能指一个自由原子的尺寸,或者可能用作原子(包括分子中的原子和自由原子)尺寸不同测量方式的一个笼统的术语。在下文中,这个术语还包括离子半径,主要是因为共价键和离子键区别不大。而原子的定义“能区分出化学元素的最小粒子”本身就比较含糊,包括了自由原子以及与其它相同或不同原子一起组成化学物的原子。除了离子半径,其他可能指代的半径值包括玻尔半径,范德华半径,共价半径和金属半径等。 原子半径完全由电子决定,原子核的大小为是电子云的十万分之一。值得注意的是原子核没有固定的位置,而电子云没有固定的边界。 虽然有上述的困难,目前还是有很多的测量原子(包括离子)的方法,这些方法通常基于实验测量和计算方式的结合。目前普遍认为原子像一个球体,尺寸在30–300皮米之间,在元素周期表中的原子半径变化有规律可循,从而对元素的化学特性造成影响。.

新!!: 稀有气体和原子半径 · 查看更多 »

卤素

卤素是元素周期表上的第ⅦA族元素(IUPAC新规定:17族),包括氟(F)、氯(Cl)、溴(Br)、碘(I)、-zh-hans:砹; zh-hant:砈;-(At)和(Ts)。.

新!!: 稀有气体和卤素 · 查看更多 »

单质

单质是由同种元素组成的纯净物。元素在单质中存在时称为元素的游离态。 一般来说,单质的性质与其元素的性质密切相关。比如,很多金属的金属性都很明显,那么它们的单质还原性就很强。不同种类元素的单质,其性质差异在结构上反映得最为突出。 与单质相对,由多种元素组成的物质叫做化合物。.

新!!: 稀有气体和单质 · 查看更多 »

吸收光谱学

吸收光谱学是指一门光谱学技术,它通过测量电磁辐射的吸收,形成频率或波长对与试样交互的函数。试样从辐射域吸收能量,如光子。吸收强度的变化与频率构成函数关系,这种变化就是吸收光谱。吸收光谱学也应用于整个电磁波谱。 吸收光谱学被用作分析化学的工具,它可以确定试样中是否存在某种特殊物质,以及在许多情况下量化该物质存在的数量。红外和紫外-可见光光谱学是分析应用中特别常见的。吸收光谱学也被用于分子和原子物理学、天文光谱学和遥感的研究。 测量吸收光谱的实验方法很多。最常见的方法是将产生的无线电波导向试样,并探测透射电波的强度。透射的能量可以用来计算吸收。辐射源、试样布置和探测技术的选择,很大程度上依赖于频率范围和实验目的。.

新!!: 稀有气体和吸收光谱学 · 查看更多 »

同位素列表

同位素列表列出了所有已知的化学元素的同位素。 此表由左到右按照原子序数的增长而排列,由下到上依照中子数目由少到多排列。 表格中的颜色表示各个同位素的半衰期(参见图例),表格边缘的颜色表示最稳定的核素的半衰期。.

新!!: 稀有气体和同位素列表 · 查看更多 »

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

新!!: 稀有气体和太阳 · 查看更多 »

威廉·拉姆齐

威廉·拉姆齐爵士,KCB(Sir William Ramsay,),英国化学家,1904年诺贝尔化学奖获得者。.

新!!: 稀有气体和威廉·拉姆齐 · 查看更多 »

主族元素

主族元素是化學上對元素的一種分類,是指週期表中s區及p區的元素。週期表中除了過渡金屬、鑭系元素、錒系元素之外的都是主族元素。 主族元素包括:.

新!!: 稀有气体和主族元素 · 查看更多 »

市售化学品列表

很多化学品能够从试剂厂商够得纯品。本列表列出试剂厂商大量生产的化学品,列表中的无机物和金属有机化合物按物质的金属元素或中心元素排列,有机物列于最后,按拼音排列。.

新!!: 稀有气体和市售化学品列表 · 查看更多 »

三氯化钒

三氯化釩是一种無機物,化學式為VCl3,呈紫色,是制备其他三價釩化合物的原料。.

新!!: 稀有气体和三氯化钒 · 查看更多 »

一氢化铁

一氢化铁是由铁和氢形成的化合物,化学式为FeH。仅在极端环境中才检测到单独存在的一氢化铁,如在低温稀有气体中,在冷恒星的大气层中,或在高于铁沸点的温度以气体的形式存在。它被假定为具有三个悬空的价键,因此是一种自由基;其通式可以写成FeH2•以强调这一事实。 在极端低温下(低于10 K),FeH可以与分子氢形成配合物FeH·H2。 一氢化铁是几种已知的铁和氢气的化合物之一,都同样罕见;其中还包括只在极端低温下才能稳定存在的二氢化铁(FeH2),及一种高压铁氢合金,化学式也为FeH。 20世纪50年代,科尔曼和L. Åkerlind首先在实验室检测到了一氢化铁。.

新!!: 稀有气体和一氢化铁 · 查看更多 »

一溴化碘

一溴化碘是一种卤素互化物,化学式为IBr。它是暗黑色晶体,有刺激性气味,可溶于水、乙醇、乙醚。它被用作碘化试剂。.

新!!: 稀有气体和一溴化碘 · 查看更多 »

亨利定律

亨利定律,是由威廉·亨利所發現的一个氣體的定律。這個式子説明在常溫下且密閉的容器中,溶於某溶劑的某氣體之體積摩尔濃度,會正好與此溶液達成平衡的氣體分壓成正比。.

新!!: 稀有气体和亨利定律 · 查看更多 »

亨利·卡文迪什

亨利·卡文迪什(Henry Cavendish,又译亨利·卡文迪许、亨利·卡文狄西、亨利·卡文迪西,),英国物理学家、化学家。他首次对氢气的性质进行了细致的研究,证明了水并非单质,预言了空气中稀有气体的存在。他首次发现了库伦定律和欧姆定律,将电势概念广泛应用于电学,并精确测量了地球的密度,被认为是牛顿之后英国最伟大的科学家之一。.

新!!: 稀有气体和亨利·卡文迪什 · 查看更多 »

二叠纪-三叠纪灭绝事件

二疊紀-三疊紀滅絕事件(Permian–Triassic extinction event,簡稱P-Tr)是一個大規模物种滅絕事件,發生於古生代二疊紀與中生代三疊紀之間,距今大約2億5140萬年 。若以消失的物種來計算,當時地球上70%的陸生脊椎動物,以及高達96%的海中生物消失;這次滅絕事件也造成昆蟲的唯一一次大量滅絕。計有57%的科與83%的屬消失Sole, R. V., and Newman, M., 2002.

新!!: 稀有气体和二叠纪-三叠纪灭绝事件 · 查看更多 »

二氟化氪

二氟化氪(化学式:KrF2)是最早制得的稀有气体氪的化合物。.

新!!: 稀有气体和二氟化氪 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 稀有气体和二氧化碳 · 查看更多 »

介電質

介電質(dielectric)是一種可被電極化的絕緣體。假設將介電質置入外電場,則束縛於其原子或分子的束縛電荷不會流過介電質,只會從原本位置移動微小距離,即正電荷朝著電場方向稍微遷移位置,而負電荷朝著反方向稍微遷移位置。這會造成介電質電極化,從而在介電質內部產生反抗電場,減弱整個介電質內部的電場。假若介電質是由弱鍵結的分子構成,則這些分子不但會被電極化,也會改變取向,試著將自己的對稱軸與電場對齊。 介電質通常指的是可被高度電極化的物質。在原子與分子層次,極化性可以用來衡量微觀的電極化性質,從極化性可以理論計算出介電質的電極化率和電容率,兩個巨觀的電極化性質。或者,可以直接從實驗測量出介電質的電極化率和電容率。假若置入了具有高電容率的介電質,則平行板電容器的電容會大幅增加,儲存於兩塊金屬平行板的正負電荷也會增加 。 介電質的用途相當廣泛。介電質的電傳導能力很低,再加上具備有很好的(dielectric strength)性質,就可以用來製造電絕緣體。另外介電質可被高度電極化,是優良的電容器材料。對於介電性質的研究,涉及了物質內部電能和磁能的儲存與耗散。用於解釋電子學、光學和固態物理的各種各樣現象,這研究極端重要。 回應麥可·法拉第的請求,英國科學家威廉·暉巍(William Whewell)命名所有可被電極化的絕緣體為介電質。.

新!!: 稀有气体和介電質 · 查看更多 »

伦敦大学学院

倫敦大學學院(University College London;縮寫:UCL)為一所坐落於英國倫敦的公立研究型大學。學院最初於1826年,由湯瑪斯·坎貝爾及以“倫敦大學”(London University)之名創立,是倫敦市第一所高等學府,且為全英首間不拘學生性別及宗教背景的世俗高校。雖沒有直接介入學校的建設,但哲學家傑里米·邊沁對教育的理念啟發了創辦者,故獲譽為“倫大教父”。1836年,以書院聯邦制正式成立倫敦大學(The University of London),學校改名為“倫敦大學學院”,與-zh:倫敦國王學院;zh-cn:伦敦国王学院; zh-sg:伦敦国王学院; zh-tw:倫敦國王學院; zh-hk:倫敦英皇學院; zh-mo:倫敦英皇學院;-(King's College London)成為了此大學的兩位始創成員學院。學校隨後迅速發展並與多所專科院校合併,也在英格蘭開創了不少高校學系。 倫敦大學學院共設11所學術學院,擁有超過100個學術科系與研究中心。其本部位於倫敦市中心的布盧姆茨伯里區,另設兩所分別坐落於澳大利亚及卡塔爾的衛星校園。雖隸屬倫敦大學聯邦,但學院本身擁有包括獨立頒授學位的高度自治權,故性質與一般大學無異。倫大學院為英國其中一所“金三角名校”,亦是建立的11所生物醫學研究基地及多個科技聯盟的始創者之一。 倫敦大學學院為英國最難入讀的學府之一,亦在多個世界大學排行榜上位居全球前二十,全英四強之列。校內現有17間圖書館、9所博物館及收藏區,館藏涵蓋不同學術範疇。此校的師生、校友包括了34名諾貝爾獎得主、3位菲爾茲獲獎者、多名政治要員與組織領袖及數位著名文藝人。.

新!!: 稀有气体和伦敦大学学院 · 查看更多 »

低温物理学

低溫物理學 (Cryogenics),又稱低溫學,是物理學的分支,主要研究物質在低溫狀況下的物理性質的科學,有時也包括低溫下獲得的生成物和它的測量技術。而低溫物理學中的低溫定義為−150 °C(−238 °F,即123K)以下的溫度。 19世紀,英國物理學家法拉第在一次實驗中偶然液化了氯氣,由此,他認為一切氣體在低溫高壓的情況下都可以被液化。到了19世紀40年代,法拉第本人已經成功液化了當時大多數已知的氣體,只有氧氣、氮氣、氫氣、一氧化碳、二氧化氮、甲烷六種氣體無法液化,而且創出當時的最低溫度( -110 °C, 163K)。隨後,低溫設備不斷被完善,逐級降溫和定壓氣體膨脹方法開始廣泛應用。1898年英國物理學家杜瓦成功液化了氫氣,標誌著這六種氣體都夠能被液化。1895年,英國化學家從礦石中分離出更難液化的氣體——氦氣。直至1908年,才成功被荷蘭萊頓大學的物理學家海克·卡末林·昂內斯將其液化,同時令低溫記錄創下新低( -269 °C, 4K)。之後,昂內斯獲得1913年的諾貝爾物理學獎。 1911年,昂內斯意外發現以( -268.8 °C, 4.2K)的液氦冷卻汞時,電阻突然驟降到接近零歐姆(0Ω),此現象即為超導現象。隨後,他又發現在低溫下鉛、錫也和汞一樣具有相似的超導特性。超導效應的發展前景可觀,如果能使超導材料在室溫下應用,將能大大提高輸電的效能,延長材料使用的壽命,降低熱損耗。近年,物理學家正不斷尋找超導轉變溫度(Tc)更高的超導材料。目前,高溫超導體已經成為凝聚態物理學中最熱門的研究領域。.

新!!: 稀有气体和低温物理学 · 查看更多 »

德米特里·伊万诺维奇·门捷列夫

德米特里·伊萬諾維奇·門捷列夫(ˈdmʲitrʲɪj ɪˈvanəvʲɪtɕ mʲɪndʲɪˈlʲejɪf ,),19世纪俄国科學家,發現化學元素的週期性,依照原子量,製作出世界上第一張元素週期表,并据以预见了一些尚未发现的元素。.

新!!: 稀有气体和德米特里·伊万诺维奇·门捷列夫 · 查看更多 »

保罗·埃米尔·勒科克·德布瓦博德兰

保羅·埃米爾·勒科克·德布瓦博德蘭(Paul Émile Lecoq de Boisbaudran,),又名法蘭索瓦·勒科克·德布瓦博德蘭(François Lecoq de Boisbaudran),是一名法国化学家。德布瓦博德蘭發現了德米特里·伊萬諾維奇·門捷列夫預測的化學元素鎵,從而驗證了門捷列夫的元素周期表,及後又發現了化學元素釤和鏑;他又提出氬和氦與其他化學元素的性質截然不同,應在元素周期表分離成一個新系列(即後來的惰性氣體)。此外,德布瓦博德蘭研發了改良的光譜學技術,用於化學分析。.

新!!: 稀有气体和保罗·埃米尔·勒科克·德布瓦博德兰 · 查看更多 »

土衛六大氣層

土衛六大氣層是太陽系的天然衛星中唯一發展高度完整的衛星大氣層。.

新!!: 稀有气体和土衛六大氣層 · 查看更多 »

土星大气进入器

土星大气进入器(Saturn Atmospheric Entry Probe)是一项自2010年起研发的任务,它包含了一颗计划降落在土星大气中并发回数据的探针。基于地球与土星之间的相对位置,探测器计划可在2027年8月30日发射,随后于2034年6月22日到达土星。它是美国太空总署新疆界計畫计划中的探测器之一。.

新!!: 稀有气体和土星大气进入器 · 查看更多 »

化合价

化合價(Valence)是由一定元素的原子構成的化學鍵的數量。一個原子是由原子核和外圍的電子构成的,電子在原子核外圍是分層運動的,化合物的各個原子是以和化合價同樣多的化合鍵互相連接在一起的IUPAC Gold Book definition: 。 元素周圍的價電子形成價鍵,單價原子可以形成一個共價鍵,雙價原子可形成兩個σ键或一個σ键加一個π键The Free Dictionary: 。 共價,在1919年,Irving Langmuir利用這個詞解釋Gilbert N. Lewis的立方體原子模型,任一原子和周圍原子之間成對電子的分享叫做原子的共價,例如,如果有+1價,代表需要丢掉一個電子才能變成完整的價電子數;反之,如果是-1價時,則需要得到一個電子才會變成完整的價電子數,因此在這兩個原子之間的鍵結電子能互相的補充或分享他們的電子以至形成穩定的價電子數。在這之後,“共價”的詞比“價”更能被敘述、討論。.

新!!: 稀有气体和化合价 · 查看更多 »

化合物

化合物(Chemical compound)是由兩種以上的元素以固定的質量比通过化學鍵结合在一起的化學物質。化合物可以由化學反應分解為更簡單的化學物質。像甲烷(CH4)、葡萄糖(C6H12O6)、硫酸鉛(PbSO4)及二氧化碳(CO2)都是化合物。 化合物是純物質分类下的一类,与元素和混合物相对。尽管有些情况下化合物的实际情况会与上述定义背离,如组成元素随制备方法而改变,内部结构并不均一,不同核素的分布并不固定等等,但一般仍认为它们属于化合物的范畴。另外,化合物中各元素的摩尔比并不一定是整数,某一元素也可呈不同的价态,例如非整比化合物和混合价态化合物。 化學元素的單質即使由幾個原子形成雙原子分子或多原子分子(如H2, S8),也不是化合物。 除特别不活泼的稀有气体氦和氖外,其他所有稳定元素都已制成了化合物。稀有气体化合物的制备曾费了一些周折。第一個稀有气体化合物六氟合铂酸氙是在1962年才製備而得。.

新!!: 稀有气体和化合物 · 查看更多 »

化学史

化學史的範圍從遠古時代一直延伸到今日。到了西元前1000年,各個古文明的科技,像是從礦石提煉金屬、製作陶器、釀酒、製作顏料、從植物中提取香料和藥物、製備奶酪、染布、製革、將脂肪轉化為肥皂、製造玻璃、製作像青銅器與其他合金等等,後來都成化學各分支的基礎。 煉金術被視為化學的先導科學,但它無法合理地解釋物質,以及物質轉變的現象。經過歷史的推演,哲学不能解释物质的本原和转化规律。炼金术同样失败了,但是它的实验奠定了化学学科的基础。炼金术和化学的分界线被认为是玻意耳于1661年的著作《怀疑的化学家》正式成立。拉瓦锡创立了质量守恒定律,它说明了化学反应中的质量关系。化学史就是化学这门科学从古到今发展的历史。.

新!!: 稀有气体和化学史 · 查看更多 »

化学年表

化学年表列出了深远地改变人们对化学这门现代科学认识的重要著作、发现、思想、发明以及实验等。化学作为一门对物质组成和相互作用进行研究的自然科学,虽然其根源可以追溯到自有文字记载之时,但我们可以认为现代化学史是从英国科学家罗伯特·波义耳开始的。 后来被引入到现代化学中的早期思想主要有两个:一是自然哲学家(例如亚里士多德和德谟克利特)试图使用演绎推理来解释所处的世界,二是炼金术士(例如贾比尔和拉齐)和炼丹家(比如孙思邈和葛洪)试图使用实验方法来延长生命或进行物质的转化,例如用丹炉炼金丹,或将贱金属转化成金。 17世纪时,“演绎”和“实验”两种思想正融合到了一起,这种处于发展中的思想被称为科学方法。随着科学方法的引入,现代化学诞生了。 被称为“中心科学”的化学很大程度上受到其他学科的影响,也在许多科学技术领域发挥着强大的影响力。许多化学领域的重大事件对其他领域来说也是关键的发现,如物理学、生物学、天文学、地质学、材料科学,不一而足 。.

新!!: 稀有气体和化学年表 · 查看更多 »

化学序

化学序是指一组化学元素,其中各元素的物理和化学特征从位于该序列一端的元素渐进地变化到位于另一端的元素。 早在元素周期表出现之前就已发现了化学序的规律,人们试图通过它来根据各元素的化学性质将元素分组进行组织。 许多化学序与周期表中的分族精确地对应。这并非巧合,分组所依据的物理性质其实同样是由导致这些元素处于周期表中同一分族中的原子轨道构型所决定.

新!!: 稀有气体和化学序 · 查看更多 »

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

新!!: 稀有气体和化學元素 · 查看更多 »

化學元素豐度

化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.

新!!: 稀有气体和化學元素豐度 · 查看更多 »

價電子

在化學中,價電子(,又名最外電子層),是表示原子最外電子層的電子,或者原子價的電子。 價電子在決定一元素如何與其他元素進行化學反應時起了重要作用:原子價電子愈少,原子就愈不穩定亦愈容易反應。.

新!!: 稀有气体和價電子 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 稀有气体和分子 · 查看更多 »

單原子氣體

單原子氣體是物理及化學上的名詞,是指只由一個原子組成的氣體,所有的化學元素在相當高溫下都是單原子氣體。 單原子氣體的運動只需考慮移動(電子激發在室溫不需考慮),因此在絶熱過桯下,單原子氣體的理想熱容比(Cp/Cv)為5/3,和雙原子氣體需考慮旋轉(但室溫不需考慮振動)的情形不同。對於理想的單原子氣體: 其中R為氣體常數。.

新!!: 稀有气体和單原子氣體 · 查看更多 »

冥古宙

冥古宙(Hadean)是太古宙之前的一個階段,分為隱生代、盆地群代、酒神代和雨海代。開始於地球形成之初,結束於38億年前,但依據不同的文獻可能有不同的定義。冥古宙最初是由)於1972年所提出的,原本是用來指已知最早岩石之前的時期。冥古宙的最后一个代对应为月球地质年代中的早雨海世,以月球的东海撞击事件为结束时间(约为38.4亿年),这也是内太阳系的后期重轰击期的结束标志。在整个冥古宙,地球从46亿年前形成,从一个炽热的岩浆球逐渐冷却固化(计算表明仅需1亿年),出现原始的海洋、大气与陆地,但仍然是地质活动剧烈、火山喷发遍布、熔岩四处流淌,在41亿年前到38亿年前地球持续遭到了大量小行星与彗星的轰击,根据同时期月球撞击坑推算(月球面對地球的那一面的大部份大型盆地如危海、寧靜海、晴朗海、肥沃海和風暴海也都是於此一時期撞击形成的),地球遭遇了:.

新!!: 稀有气体和冥古宙 · 查看更多 »

冷却剂

冷却剂是一种流过或环绕某个系统来防止该系统过热的流体。它通过将该系统产生的热量传导到其他的系统来使用或消耗热量。理想的冷却剂具有高热容量,低黏度,廉价,无毒,化学惰性,既无腐蚀性又不促进腐蚀。某些冷却剂的应用还要求其绝缘。 在高温或低温环境的工业应用过程中,热传导液(Heat Transfer Fluid)是更为常用的术语,而冷却剂则是在汽车行业以及暖通空调系统(HVAC)更为常见的叫法。同时因为在汽车以及暖通空调领域使用的冷却剂主要是液体,因此更经常被称为冷却液。工业应用中,热传导液同时包含了切削液。 冷却剂在循环过程中既可以维持其原本的物质状态(比如,气体或液体),也可以经历相变(改变原本的物质状态)。相变过程中潜热的存在使得冷却剂的效率更高。当使用冷却剂来降低环境温度时(例如空调,冰箱),它常被称作制冷剂。.

新!!: 稀有气体和冷却剂 · 查看更多 »

冷阴极计数管

冷阴极计数管是一类特殊的电子管,曾在二十世纪五六十年代的计算机中作为内存储器使用。.

新!!: 稀有气体和冷阴极计数管 · 查看更多 »

内能

在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 。內能 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 內能是一系統內的狀態函數,因為其值僅取決於該系統的目前狀態,而與達到此一狀態所採之途徑或過程無關。內能是個外延物理量。內能是個基本熱動力位能。使用勒壤得轉換,可從內能開始,在數學上建構出其他的熱動力位能。這些函數的狀態變數,部分外延變數會被其共軛內含變數所取代。因為僅是將外延變數由內含變數所取代並無法得出其他熱動力位能,所以勒壤得轉換是必要的。熱力學系統的另一個基本狀態函數為該系統的熵 ,是個除熵 S 這個狀態變數被內能 U 所取代外,具有相同狀態變數之狀態函數。 雖然內能是個宏觀物理量,內能也可在微觀層面上由兩個假設的量來解釋。一個是系統內粒子的微觀運動(平移、旋轉、振動)所產生的微觀動能。另一個是與粒子間的化學鍵及組成物質的靜止質量能量等微觀力有關之位能。在微觀的量與系統因作功、加熱或物質轉移而產生之能量增損的量之間,並不存在一個簡單的普遍關係。 能量的國際單位為焦耳(J)。有時使用單位質量(公斤)的內能(稱之為「比內能」)會比較方便。比內能的國際單位為 J/kg。若比內能以物質數量(莫耳)的單位來表示,則稱之為「莫耳內能」,且該單位為 J/mol。 從統計力學的觀點來看,內能等於系統總能量的。.

新!!: 稀有气体和内能 · 查看更多 »

准分子激光

准分子激光(英文:Excimer laser)是一种紫外气态激光,处于激发态的稀有气体和另一种气体(稀有气体或卤素)结合的混合气体形成的分子,向其基态跃迁时发射所产生的激光,称为准分子激光。 准分子激光属于低能量激光,无热效应,是方向性强、波长纯度高、输出功率大的脉冲激光,光子能量波长范围为157-353纳米,寿命为几十纳秒,属于紫外光。最常见的波长有157 nm、193 nm、248 nm、308 nm、351-353 nm。.

新!!: 稀有气体和准分子激光 · 查看更多 »

ⅧA族

#重定向 稀有气体.

新!!: 稀有气体和ⅧA族 · 查看更多 »

八隅體規則

二氧化碳的路易斯結構──中央的碳原子及兩側的氧原子均被八個電子包圍。 八隅體規則(或稱八電子規則)是化學中一個簡單的規則,即原子間的組合趨向令各電子的價層都擁有八個電子,與惰性氣體擁有相同的電子排列。主族元素,如碳、氮、氧、鹵素族、鈉、鎂都依從這個規則。簡單而言,當組成離子或分子的組成原子的最外電子層有八個電子,它們便會趨向穩定,而若不满8个时,原子间会互相共享或交换电子达到平衡稳定。例如Cl与Na形成NaCl的结构。 第一層電子最多有2個,第二層8個,第三層18個,第四層32個。公式為2n2。.

新!!: 稀有气体和八隅體規則 · 查看更多 »

六氟化氙

六氟化氙(化学式:XeF6)是稀有气体氙的氟化物之一,室温下为稳定的无色晶体,是很强的氟化剂。六氟化氙可由二氟化氙在300°C和6MPa下长期加热得到。.

新!!: 稀有气体和六氟化氙 · 查看更多 »

兰纳-琼斯势

兰纳-琼斯势(Lennard-Jones potential),又称L-J势, 6-12势, 或12-6势,是用来模拟两个电中性的分子或原子间相互作用势能的一个比较简单的数学模型。最早由数学家于1924年提出。由于其解析形式简单而被广泛使用,特别是用来描述惰性气体分子间相互作用尤为精确。 兰纳-琼斯势能以两体距离为唯一变量,包含两个参数。其形式为: V(r).

新!!: 稀有气体和兰纳-琼斯势 · 查看更多 »

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

新!!: 稀有气体和共价键 · 查看更多 »

元素周期律

-- 元素的物理、化學性質隨原子序數逐漸變化的規律叫做元素週期律。元素週期律由門德列夫(Dmitri Mendeleyev)首先發現,並根據此規律創制了元素週期表。 結合元素週期表,元素週期律可以表述為:.

新!!: 稀有气体和元素周期律 · 查看更多 »

元素周期表

化學元素週期表是根據原子序從小至大排序的化學元素列表。列表大體呈長方形,某些元素週期中留有空格,使化学性质相似的元素处在同一族中,如鹵素及惰性氣體。這使週期表中形成元素分區。由於週期表能夠準確地預測各種元素的特性及其之間的關係,因此它在化學及其他科學範疇中被廣泛使用,作為分析化學行為時十分有用的框架。 現代的週期表由德米特里·門捷列夫於1869年創造,用以展現當時已知元素特性的週期性。自此,隨--新元素的發現和理論模型的發展,週期表的外觀曾經過改變及擴張。通過這種列表方式,門捷列夫也預測一些當時未知元素的特性以填補週期表中的空格。其後發現的新元素的確有相似的特性,使他的預測得到証實。 化學元素週期表将各个化学元素依据原子序编号,并依此排列。原子序從1(氫)至118(Og)的所有元素都已被发现或成功合成,其中第113、115、117、118号元素在2015年12月30日獲得IUPAC的确认。 而其中直到鉲的元素都在自然界中存在,其--的(亦包括眾多放射性同位素)都是在實驗室中合成的。目前Og之後的元素的合成正在進行中,帶出如何擴展元素週期表的問題。.

新!!: 稀有气体和元素周期表 · 查看更多 »

固体物理学

固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。.

新!!: 稀有气体和固体物理学 · 查看更多 »

四氟一氧化氙

四氟一氧化氙(化学式:XeOF4)是稀有气体氙生成的卤氧化物之一,属于其中比较稳定的一个,可以长期储存于镍制的容器中。四氟一氧化氙是六氟化氙水解不完全的产物,它可以进一步水解为二氟二氧化氙,最终生成三氧化氙: 四氟一氧化氙分子为四方锥构型,四个氟原子共平面,氧和孤对电子分处这个平面的两侧。它有部分电离,加入氟化铯或氟化铷会使电导率剧烈增大。 四氟一氧化氙可被过量的氢在300°C时还原为氙。这是一个定量反应,可以用这个方法分析XeOF4:.

新!!: 稀有气体和四氟一氧化氙 · 查看更多 »

四氟化氙

四氟化氙(化学式:XeF4)是稀有气体氙的氟化物之一,是第一个发现的稀有气体二元化合物。.

新!!: 稀有气体和四氟化氙 · 查看更多 »

四氧化氙

四氧化氙(化学式:XeO4)是稀有气体氙的氧化物之一,黄色晶体,溶于水生成高氙酸,溶于碱生成高氙酸盐。四氧化氙只在-35.9 °C以下稳定, 高于该温度时爆炸性分解为氙和氧气。 四氧化氙中,氙原子的氧化态为+8,所有的价电子都用于成键。其他的氙氧化物包括三氧化氙,二氧化氙以及存在于固态氩中的XeOO+阳离子。.

新!!: 稀有气体和四氧化氙 · 查看更多 »

四氯化钛

四氯化钛,或氯化钛(IV),是化学式为 TiCl4 的无机化合物。 四氯化钛是生产金属钛及其化合物的重要中间体。室温下,四氯化钛为无色液体,并在空气中发烟,生成二氧化钛固体和盐酸液滴的混合物。.

新!!: 稀有气体和四氯化钛 · 查看更多 »

CPK配色

在化學中,CPK配色是一種國際通用的原子或分子模型的配色方式,也是最常用、最多人使用的分子模型上色方式,可用於各種分子模型或元素標示,最常用於CPK模型、球棒模型和空間填充模型。該配色方式由CPK模型的設計者Corey、Pauling(萊納斯·鮑林)與Koltun提出且改進。.

新!!: 稀有气体和CPK配色 · 查看更多 »

火星水文

火星水文是研究火星表面水的狀態。相較於地球,液態水在火星表面幾乎不存在。火星的水大多鎖在永久凍土和極冠等冰凍圈(Cryosphere),所以在火星表面沒有足夠的液態水可以形成水圈。只有極少量的水蒸氣存在於火星大氣層。 現在火星表面環境因為大氣壓力和溫度過低,會讓液態水蒸發或凝固而無法存在。因此研究人員研究古代火星的水文遺跡,重建。但仍無法解答液態水消失的原因。 目前已有許多直接和間接證據證明火星表面有液態水間歇性存在於表面或地表下;例如河床Harrison, K and R. Grimm.

新!!: 稀有气体和火星水文 · 查看更多 »

球床反應堆

球床反應堆(Pebble bed reactor,縮寫為PBR),亦稱卵石床反應堆,是一種先進的核子反應堆設計,1966年於德國首次提出。球床反应堆是高温气冷堆之一(其它堆型还有英国的二氧化碳冷却石墨堆,美国和日本的棱柱氦冷石墨堆),它成为第四代反应堆技术的6个候选堆型之一。這種科技增加了反應堆的安全及效率。反應堆的核燃料密度比一般的反應堆低,就算是失去冷卻,亦不會出現核芯熔解。反應堆使用惰性氣體或接近惰性氣體,如氦、氮、二氧化碳作為冷卻劑,在高溫下直接驱动涡轮机。由於毋須處理蒸氣,系統的熱能转换效率可以得到提高。 正在發展這種技術的國家包括有:美國、南非、荷蘭等。中國的華能亦與清華大學合作研究;目前已建有10兆瓦的試驗反應堆,並計劃於五年內興建第一座商用發電廠。.

新!!: 稀有气体和球床反應堆 · 查看更多 »

球粒隕石

Phnom Penh 球粒隕石L6 - 1868 球粒隕石是石隕石的一種,它沒有遭遇過母天體的熔融或地質分異,因此結構沒有改變過。幾乎所有球粒隕石均含有毫米大小,稱為“球粒”的球形岩石。球粒隕石是最普通的一類隕石,佔已分類的約20,000顆隕石中的91-92%,其中體積最大的是吉林隕石——一種H球粒隕石。.

新!!: 稀有气体和球粒隕石 · 查看更多 »

理想气体状态方程

在熱力學裏,描述理想氣體宏觀物理行為的状态方程稱為理想氣體狀態方程(ideal gas equation of state)。理想气体定律表明,理想氣體狀態方程為 其中,p為理想气体的zh-hans:压强;zh-hant:壓力-,V为理想气体的体积,n為气体物质的量(通常是zh-hans:摩尔;zh-hant:莫耳-),R为理想气体常数,T為理想气体的热力学温度,K为波尔兹曼常数,N表示单位体积气体粒子数。 理想氣體方程以变量多、适用范围广而著称,對於很多種不同狀況,理想氣體狀態方程都可以正確地近似實際氣體的物理行為,包括常温常压下的空气也可以近似地适用。 理想气体定律是建立於zh-hans:玻意耳-马略特定律;zh-hant:波以耳定律-、查理定律、盖-吕萨克定律等人提出的经验定律。最先由物理學者埃米爾·克拉佩龍於1834年提出。奧格斯特·克羅尼格(August Krönig)於1856年、魯道夫·克勞修斯於1857年分別獨立地從氣體動理論推導出理想气体定律。.

新!!: 稀有气体和理想气体状态方程 · 查看更多 »

碱金属

碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

新!!: 稀有气体和碱金属 · 查看更多 »

磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.

新!!: 稀有气体和磁 · 查看更多 »

磁化強度

磁化強度(magnetization),又稱磁化向量,是衡量物體的磁性的一個物理量,定義為單位體積的磁偶極矩,如下方程式: 其中,\mathbf 是磁化強度,n 是磁偶極子密度,\mathbf 是每一個磁偶極子的磁偶極矩。 當施加外磁場於物質時,物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度描述物質被磁化的程度。採用國際單位制,磁化強度的單位是安培/公尺。 物質被磁化所產生的磁偶極矩有兩種起源。一種是由在原子內部的電子,由於外磁場的作用,其軌域運動產生的磁矩會做拉莫爾進動,從而產生的額外磁矩,累積凝聚而成。另外一種是在外加靜磁場後,物質內的粒子自旋發生「磁化」,趨於依照磁場方向排列。這些自旋構成的磁偶極子可視為一個個小磁鐵,可以以向量表示,作為自旋相關磁性分析的古典描述。例如,用於核磁共振現象中自旋動態的分析。 物質對於外磁場的響應,和物質本身任何已存在的磁偶極矩(例如,在鐵磁性物質內部的磁偶極矩),綜合起來,就是淨磁化強度。 在一個磁性物質的內部,磁化強度不一定是均勻的,磁化強度時常是位置向量的函數。.

新!!: 稀有气体和磁化強度 · 查看更多 »

磷(Phosphorum,化学符号:P)是一种化学元素,它的原子序数是15。.

新!!: 稀有气体和磷 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 稀有气体和离子 · 查看更多 »

离子键

离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.

新!!: 稀有气体和离子键 · 查看更多 »

科普利獎章

科普利獎章(Copley Medal)是英國皇家學会每年頒發的科學獎章,以奖励“在任何科学分支上的杰出成就”。始于1731年授予的科普利獎章是皇家學会仍在颁发的最古老的科学奖章,也可能是世界上最早的科学奖章。.

新!!: 稀有气体和科普利獎章 · 查看更多 »

稀有氣體性質表

這個頁面包含了稀有氣體大部分的主要數據,包括物理數據及原子數據等等。.

新!!: 稀有气体和稀有氣體性質表 · 查看更多 »

稀有气体化合物

有气体化合物指含有稀有气体元素的化合物。稀有气体元素原子外层为闭壳结构,化学性质不活泼,因此它们化合物的制备颇费了一些周折。 广义上看,稀有气体化合物可以包括稀有气体元素形成的众多包合物和水合物,现在一般认为1962年--得的六氟合铂酸氙是最早制得的稀有气体化合物,因为它的成功合成不仅意味着稀有气体元素有可能形成化合物,而且推动了对稀有气体化合物的系统研究。氙的众多简单化合物也是在此不久之后发现的。.

新!!: 稀有气体和稀有气体化合物 · 查看更多 »

空间风化

太空風化是所有暴露在嚴苛的太空環境中的天體表層所經歷的一系列变化過程的总称。月球、水星、小行星、彗星等沒有大氣層的天體,表層會受到宇宙射線和太陽輻射的照射、太陽風粒子的轰击、大大小小的隕石和微流星體的撞击。太空風化的過程是影響天體表層物理和光學性質的重要因素。因此了解太空風化的作用有助于正确解釋观测数据。.

新!!: 稀有气体和空间风化 · 查看更多 »

空气

气是指地球大气层中的气体混合。它主要由78%的氮气、21%氧气、还有1%的稀有气体和杂质组成的混合物。空气的成分不是固定的,随着高度的改变、气压的改变,空气的组成比例也会改变。但是长期以来人们一直认为空气是一种单一的物质,直到后来法国科学家拉瓦锡通过实验首先得出了空气是由氧气和氮气组成的结论。19世纪末,科学家们又通过大量的实验发现,空气裡还有氦、氩、氙、氖等稀有气体。 在自然状态下空气是无味无臭的。 空气中的氧气对于所有需氧生物来说是必需。所有动物都需要呼吸氧气,植物利用空气中的二氧化碳进行光合作用,二氧化碳是近乎所有植物的唯一的碳的来源。.

新!!: 稀有气体和空气 · 查看更多 »

第1周期元素

第1周期元素是元素周期表中第一行(即周期)的元素,僅有兩個元素: 周 *.

新!!: 稀有气体和第1周期元素 · 查看更多 »

第2周期元素

第2周期元素是元素周期表中第二行(即周期)的元素。列表如下: 周 *.

新!!: 稀有气体和第2周期元素 · 查看更多 »

第3周期元素

第3周期元素是元素周期表中第三行(即周期)的元素。含有: 周 *.

新!!: 稀有气体和第3周期元素 · 查看更多 »

第4周期元素

第4周期元素是元素周期表中第四行(即周期)的元素。 有: 第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素 周 *.

新!!: 稀有气体和第4周期元素 · 查看更多 »

第5周期元素

第5周期元素是元素周期表中第五行(即周期)的元素。 有: 第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素 周 *.

新!!: 稀有气体和第5周期元素 · 查看更多 »

第6周期元素

6周期元素是元素周期表第六行(即周期)的元素,包括镧系元素。该周期元素都具有一定毒性。 有: 第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素.

新!!: 稀有气体和第6周期元素 · 查看更多 »

第7周期元素

第7周期元素是元素周期表第七行(即周期)的元素,包括锕系元素。 有: 第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素 - 第9周期元素 周 *.

新!!: 稀有气体和第7周期元素 · 查看更多 »

第8周期元素

8週期元素指的是擴展元素週期表中第8週期中50個假想化學元素中的任何一個。它們根據IUPAC元素系統命名法命名。這些元素都仍未被發現或合成,目前已合成的最重的元素為Og,原子序為118,是第7週期元素中的最後一個。它們的同位素可能都太不穩定,近期都不一定會有重要性。有可能由於滴線不穩定性,只有較前的第8週期元素能夠存在,而週期表會在穩定島後的Ubh(原子序126)處終結。 如果能夠製造足夠的這些元素並能研究它們的化學特性,其屬性可能和先前週期的元素截然不同。這是因為其電子排佈可能因量子效應和相對論性效應而改變。由於5g、6f和7d原子軌道的能級十分接近,使得它們可以互相交換電子。這會導致一系列的超錒系元素擁有非常相近的化學屬性,並和前面的週期中的元素毫不相關。.

新!!: 稀有气体和第8周期元素 · 查看更多 »

等离子体

--(又稱--)是在固態、液態和氣態以外的第四大物質狀態,其特性與前三者截然不同。 氣體在高溫或強電磁場下,會變為等離子體。在這種狀態下,氣體中的原子會擁有比正常更多或更少的電子,從而形成陰離子或陽離子,即帶負電荷或正電荷的粒子。氣體中的任何共價鍵也會分離。 由於等離子體含有許多載流子,因此它能夠導電,對電磁場也有很強的反應。和氣體一樣,等離子體的形狀和體積並非固定,而是會根據容器而改變;但和氣體不一樣的是,在磁場的作用下,它會形成各種結構,例如絲狀物、圓柱狀物和雙層等。 等離子體是宇宙重子物質最常見的形態,其中大部分存在於稀薄的星系際空間(特別是星系團內介質)和恆星之中。.

新!!: 稀有气体和等离子体 · 查看更多 »

等离子灯

等离子灯是一种装饰性的灯,在1980年代最为流行,商品名又名辉光球。等离子灯由物理学家尼古拉·特斯拉发明,他做了一个实验,在玻璃电子管通以高频率的电流,来研究高电压现象。特斯拉称之为惰性气体放电管。现代的等离子灯由比尔·帕克设计。.

新!!: 稀有气体和等离子灯 · 查看更多 »

等離子顯示屏

電漿顯示器(Plasma Display Panel)又稱為--顯示屏,是一種平面顯示屏幕,光線由兩塊玻璃之間的離子,射向磷質而發出。与液晶显示器不同,放出的氣體並無水銀成份,而是使用鈍氣氖及氙混合而成,這種氣體是無害氣體。 電漿顯示器甚為光亮(1000 lx或以上),可顯示更多種顏色,也可製造出較大面積的顯示屏,最大對角可達381厘米(150吋)。等離子顯示屏的對比度亦高,可製造出全黑效果,對觀看電影尤其適合。顯示屏厚度只有6厘米,連同其他電路板,厚度亦只有10厘米。 電漿的發光原理是在真空玻璃管中注入惰性氣體或水銀蒸氣,加電壓之後,使氣體產生等離子效應,放出紫外線,激發荧光粉而产生可见光,利用激發時間的長短來產生不同的亮度。電漿顯示器中,每一个像素都是三个不同颜色(三原色)的等离子发光體所产生的。由於它是每個獨立的發光體在同一時間一次點亮的,所以特別清晰鮮明。電漿顯示器的使用壽命約5~6萬個小時。隨著使用的時間的增加,其亮度會衰退。 要注意的是,電漿顯示器並不是液晶顯示器。後者的顯示器雖然也很輕薄,但是用的技術卻是大不相同。液晶顯示器通常會使用一到兩個大型螢光燈或是LED當作其背光源,在背光源上面的液晶面板則是利用遮罩的原理讓顯示器顯示出不同顏色。CNET Australia -.

新!!: 稀有气体和等離子顯示屏 · 查看更多 »

約翰·斯特拉特,第三代瑞利男爵

約翰·斯特拉特,第三代瑞利男爵,OM,FRS(John Strutt, 3rd Baron Rayleigh,),英國物理學家。他与威廉·拉姆齐合作发现氩元素,并因此获得1904年诺贝尔物理学奖。他还发现了瑞利散射,预测了面波的存在。.

新!!: 稀有气体和約翰·斯特拉特,第三代瑞利男爵 · 查看更多 »

绝热过程

绝热过程(Adiabatic process)是一个绝热体系的变化过程,绝热体系为和外界没有热量和粒子交换,但有其他形式的能量交换的体系,属于封闭体系的一种。绝热过程有绝热压缩和绝热膨胀两种。常见的一个绝热过程的例子是绝热火焰温度,该温度是指在假定火焰燃烧时没有传递热量给外界的情况下所可能达到的温度。现实中,不存在真正意义上符合定义的绝热过程,绝热过程只是一种近似,所以有时也称为绝热近似。 绝热过程分为可逆过程(熵增为零)和不可逆过程(熵增不为零)两种。可逆的绝热过程是等熵过程。等熵过程的对立面是等温过程,在等温过程中,最大限度的热量被转移到了外界,使得系统温度恒定如常。由于在热力学中,温度与熵是一组共轭变量,等温过程和等熵过程也可以视为“共轭”的一对过程。 如果一个热力学系统的变化快到足以忽略与外界的热交换的话,这一变化过程就可以视为绝热过程,又称“准静态过程”。准静态过程的熵增可以忽略,所以视作可逆过程,严格说来,在热力学中,准静态过程与可逆过程没有严格区分,在某些文献中被作为同义词使用。 同样的,如果一个热力学系统的变化慢到足以靠与外界的热交换来保持恒温的话,该过程则可以视为等温过程。.

新!!: 稀有气体和绝热过程 · 查看更多 »

甲烷

烷(化學式:;英文:Methane),是結構最簡單的烷類,由一個碳原子以及四個氫原子組成。它是最簡單的烴類也是天然氣的主要成分。甲烷在地球上有很高的相對豐度,使之成為很有發展潜力的一種燃料,但在標準狀態下收集以及存儲氣態的甲烷是一個十分有挑戰性的課題。 在自然狀態下,甲烷可以在地底下或者海底找到,而大氣中也含有甲烷,這些甲烷稱為大氣甲烷。在原始大氣中,甲烷是主要成分之一。自1750年以來,地球大氣中的甲烷濃度增加了約150%,造成的全球暖化效應並佔總長壽命輻射以及全球所有溫室氣體的20%(不包括水蒸氣)。在太空中,不少星體的表面和大氣中也有甲烷。 甲烷的結構是由一個碳和四個氫原子透過sp3混成的方式化合而成,並且是所有烴類物質中,含碳量最小,且含氫量最大的碳氫化合物,因此甲烷分子的分子結構是一個正四面體的結構,碳大約位於該正四面體的幾何中心,氫位於其四個頂點,且四個碳氫鍵的鍵的鍵角相等、鍵長等長。標準狀態下的甲烷是一種無色無味的氣體。一些有機物在缺氧情況下分解時所產生的沼氣其實就是甲烷。.

新!!: 稀有气体和甲烷 · 查看更多 »

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

新!!: 稀有气体和电子亲合能 · 查看更多 »

电负性

电负性(electron negativity,簡寫EN),也譯作離子性、負電性及陰電性,是综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。.

新!!: 稀有气体和电负性 · 查看更多 »

焊接

接(Welding),也寫作--或稱熔接、鎔接,是一種以加熱方式接合金属或其他熱塑性塑料的工藝及技術。焊接透過下列三種途徑達成接合的目的:.

新!!: 稀有气体和焊接 · 查看更多 »

相对论量子化学

对论量子化学是指同時使用量子化学和相对论力学来解释元素的性质与结构的方法,特别是對於元素周期表中的重元素。 早期量子力学的发展并不考虑相对论的影响,因此人們通常认为“相对论效应”是指由于计算没有考虑相对论而与真实值產生差异或甚至矛盾。本文中的重元素指的是元素周期表中原子序数较大的元素。由於質量較大的緣故,相对论对它们的影响是不可忽略的。典型的重元素包括镧系元素和锕系元素等。 在化学中,相对论效应可以视为非相对论理论的微扰或微小修正,这可以从薛定谔方程推导获得。这些修正对原子中不同原子轨道上的电子具有不同的影响,这取决于这些电子的速度与光速的相对差别。相对论效应在重元素更加显著,这是由于只有这些元素中的电子速度能与光速相比拟。.

新!!: 稀有气体和相对论量子化学 · 查看更多 »

盖革计数器

革计数器(Geiger counter)又叫盖革-米勒计数器(Geiger-Müller counter),是一种用于探测电离辐射的粒子探测器,通常用于探测α粒子和β粒子,也有些型号盖革计数器可以探测γ射线及X射线。.

新!!: 稀有气体和盖革计数器 · 查看更多 »

鎶(Copernicium)是一種超重元素,化學符號是Cn,原子序是112。鎶會通过α衰变成为273Ds,半衰期最长的鎶同位素为285Cn,有29秒。位於德国达姆施塔特重离子研究所(GSI),由和领导的研究团队在1996年首次合成出鎶。 在元素周期表中,鎶属于d区元素,同时也是超锕系元素。鎶和金的化学反应显示,它是一种易挥发的金属。计算显示,鎶与比它轻的同族元素有较大的差异。最显著的不同就是鎶會在失去7s電子層前先失去两个6d层的电子。因此,根据相对论效应,鎶會是一种过渡金属。通过计算,科学家还发现Cn能呈稳定的+4氧化态,而汞則仅能在极端条件下呈+4态,锌和镉则不能呈+4态。科學家也精確地預測了鎶从游离态到化合态所需的能量。 鎶只能在實驗室中經人工合成,截至目前,科学家用不同的核反应合成了75个鎶原子。.

新!!: 稀有气体和鎶 · 查看更多 »

聲致發光

聲致發光(sonoluminescence),是指當液體中的氣泡受到聲音的激發時,氣泡內爆(implosion)並迸發出極短暫的亮光的現象。.

新!!: 稀有气体和聲致發光 · 查看更多 »

联合制碱法

联合制碱法又称侯氏制碱法(),用于在工业上制取纯碱(Na2CO3),由化学家侯德榜于1939年发明,是世界上广泛采用的制纯碱法。 具体过程为:在饱和氨盐水中(氨气,氯化钠都达到饱和的溶液)通入二氧化碳从而发生如下反应: 反应中的碳酸氢钠由于溶解度低而析出,可以进一步煅烧分解为碳酸钠,水和二氧化碳,其中二氧化碳可以再次进入反应重复利用。 为了获取存留在溶液中的氯化铵,在废液中加入氯化钠,并在30-40℃下向废液中通入氨气,然后降温到10℃以下,由于氯化铵在30℃时的溶解度比氯化钠大,而在10℃下溶解度比氯化钠小,以及同离子效应,使氯化铵从母液析出,其母液又可作为下一次制碱的原料,重复利用。 所谓“联合制碱法”中的“联合”,指该法将合成氨工业与制碱工业组合在一起,利用了生产氨时的副产品二氧化碳,革除了用石灰石加热分解来生产的氨碱法,简化了生产设备。此外,联合制碱法也避免了生产氨碱法中用处不大的副产物氯化钙,而用可作化肥的氯化铵来回收,相比于氨碱法更环保。 联合制碱法也存在不足。较氨碱法而言,它的用氨量较大,在有些情况下不适用。.

新!!: 稀有气体和联合制碱法 · 查看更多 »

非线性光学

非线性光学主要用来研究非线性的光学现象和理论。 介质产生的极化强度决定于入射光的电场强度,其作用可用多项式展开成多阶形式.在通常的弱光条件下,高阶项因为系数很小而可以忽略,此时可近似看成一种线性关系。但是在强激光场作用下(通常在108 V/m左右,由激光脉冲提供),极化强度的高阶项强度不可被忽略,非线性作用出现,从而可以实现光和光之间的相互作用。入射光的强度越高,高阶非线性效应越明显。非线性光学直到激光出现后,人们对二次谐波产生的发现才发展起来。(Peter Franken et al. at University of Michigan in 1961) 非线性光学包括光学倍频、混频、参量振荡、克尔效应、光孤子等现象。利用强度极高的飞秒激光可以产生高达上百倍的倍频效应,可以用来产生深紫外光和软 X 射线。常用于产生非线性效应的物质有铌酸锂、钽酸锂、磷酸氧鈦鉀(KTP)、磷酸二氫鉀(KDP)、偏硼酸钡(BBO)等晶体(具有高的2阶非线性系数)及稀有气体(主要用于产生高阶非线性效应)。光参量振荡(OPO)是目前产生大范围连续可调波长(波长从红外到可见光甚至紫外光)激光的唯一方法。.

新!!: 稀有气体和非线性光学 · 查看更多 »

非金属元素

非金属元素是元素的一大类,在所有的118种化学元素中,非金属占了23种。在周期表中,除氢以外,其它非金属元素都排在表的右侧和上侧,属于p区。包括氢、硼、碳、氮、氧、氟、硅、磷、硫、氯、砷、硒、溴、碲、碘、-zh-hans:砹;zh-hk:砈;zh-tw:砈;-、氦、氖、氩、氪、氙、氡、Og。80%的非金属元素在现在社会中占有重要位置。.

新!!: 稀有气体和非金属元素 · 查看更多 »

非活性氣體

非活性氣體(inert gas)也稱為惰性氣體、無活性氣體或不反應氣體,是在一定條件下不會發生化學反應的氣體。 元素周期表上的18族元素一般條件和許多物質不會有化學反應,以往惰性氣體就是指這些元素。而「惰性氣體」一詞也要視其情境而定,因為上述的「惰性氣體」在特定情形下也會反應,也有些惰性氣體不屬於稀有气体,例如氮氣。惰性氣體也可能是化合物。 純化的氮氣及氬氣常作為惰性氣體使用,因為在自然界的豐度高(大氣中氮氣佔78%,氬氣佔1%),而且成本低廉。 在一些情形下(例如焊接)中會用惰性氣體作為保護用氣體,以避免不希望出現的反應(例如接觸空氣中氧氣產生的氧化,或是接觸水氣的水解)。.

新!!: 稀有气体和非活性氣體 · 查看更多 »

行星際塵雲

行星際塵雲(Interplanetary dust cloud)是瀰漫在太陽系的行星空間與其它行星系空間的宇宙塵(漂浮在太空中的小顆粒)。它已經被研究了許多年,以了解其本質、起源和大天體之間的關係。 在我們的太陽系,行星際塵埃粒子不僅散射陽光(稱為"黃道光",因為它們被侷限在黃道平面),也產生熱輻射,這是夜晚的天空中5至50微米波長的主要來源(Levasseur-Regourd, A.C. 1996)。這些在地球附近輻射出紅外線特徵的顆粒,典型的大小在50至100微米(Backman, D., 1997)。這些星際塵埃的總質量相當於一顆半徑15公里的小行星(密度大約是2.5公克/公分3)。.

新!!: 稀有气体和行星際塵雲 · 查看更多 »

街燈

街燈,又稱為路燈,是道路、街道及公眾廣場上的發光照明系統。 通常在入夜或者天黑時分啟動發亮,在黎明之後熄滅。 街燈的基本功能是照明,其附加作用可以是藝術作品、地標、路標、電話亭、留言板、信箱、集合地點、廣告燈箱等。 歷史上的路燈有用煤氣、火把、燭台、燈籠等。近年來大多以填充惰性氣體的燈泡或是日光燈為主,部份地方開始採用發光二極體(LED)照明的路燈,以節省電力。 世界各地著名的路燈有澳門的三盞燈、香港都爹利街的煤氣燈等。.

新!!: 稀有气体和街燈 · 查看更多 »

角黄素

角黄素是一种类胡萝卜素色素。深紫色晶体或结晶性粉末。熔点约210℃(分解)。对氧及光不稳定。需贮存于充惰性气体的遮光性容器内。溶于氯仿(10%),微溶于植物油(0.005%)、丙酮(0.03%)。不溶于水、乙醇、丙二醇。稳定的工业产品为溶于油脂或有机溶剂中的溶液形式,或水分散性的橙至红色粉末或颗粒形式。着色后色调不受pH值影响,对日光亦相当稳定,不易褪色。 天然品存在于某种蘑菇、甲壳类、鱼类、藻类、蛋、血液、肝脏等中。.

新!!: 稀有气体和角黄素 · 查看更多 »

高贵气体

#重定向 稀有气体.

新!!: 稀有气体和高贵气体 · 查看更多 »

诺贝尔化学奖得主列表

诺贝尔化学奖 (Nobelpriset i kemi)是诺贝尔奖的六个奖项之一,1895年设立,由瑞典皇家科学院每年颁发给在化学相关的各个领域中做出杰出贡献的科学家。根据奖项设立者阿尔弗雷德·诺贝尔的遗愿,该奖由诺贝尔基金会管理,瑞典皇家科学院每年选出五人委员会来评选出当年获奖者。第一个诺贝尔化学奖于1901年颁发给荷兰科学家雅各布斯·亨里克斯·范托夫。每一位获奖者都会得到一块奖牌,一份获奖证书,以及一笔不菲的奖金,奖金的数额每年会有变化。例如,1901年,范托夫得到的奖金为150,782瑞典克朗,相当于2007年12月的7,731,004瑞典克朗;而2008年,下村脩、马丁·查尔菲和钱永健分享了总数为一千万瑞典克朗的奖金(略多于100万欧元,或140万美元)。该奖每年于12月10日,即阿尔弗雷德·诺贝尔逝世周年纪念日,以隆重的仪式在斯德哥尔摩颁发。 就获奖领域而言,有至少25名获奖者在有机化学研究中做出贡献,比其他化学领域的获奖者都多。有两位诺贝尔化学奖获奖者,德国的里夏德·库恩(1938年获奖)和阿道夫·布特南特(1939年获奖),受其政府阻止不能接受奖金。他们虽然后来收到了奖牌和获奖证书,但没有收到奖金。弗雷德里克·桑格是至今唯一一位两次(1958年和1980年)获得诺贝尔化学奖的科学家。其他两次获得诺贝尔奖的玛丽·居里(1903年获物理学奖,1911年获化学奖)和萊納斯·鮑林(1954年获化学奖,1962年获和平奖)都是在不同领域获奖。有四位女性获得过化学奖:玛丽·居里、伊雷娜·约里奥-居里(1935年获奖)、多萝西·克劳福特·霍奇金(1964年获奖)和阿达·约纳特(2009年获奖)。截至2015年,已经有171人获得诺贝尔化学奖。从1901年至今,该奖有8年因故停发(1916-1917年、1919年、1924年、1933年、1940-1942年)。.

新!!: 稀有气体和诺贝尔化学奖得主列表 · 查看更多 »

贵重气体

#重定向 稀有气体.

新!!: 稀有气体和贵重气体 · 查看更多 »

超原子

超原子是一个表现出元素的原子性质的原子团簇。钠原子从蒸汽冷却时自然凝结成团簇时优先含有原子个数为(2,8,20,40,58等)的幻数。前两个可以被看作是需要分别填充的第一和第二壳的电子数目。超原子中的自由电子占据整个的原子团外层,而不是分散在单个的原子上。价电子光谱性质及团簇作为整体所具有的化学价态要与相应的原子相似。根据超原子特殊的物理化学特性及潜在的应用价值,有人提出了三维元素周期表的概念。比如TiO、ZrO和WC分别是金属Ni、Pd和Pt的“超级原子”。.

新!!: 稀有气体和超原子 · 查看更多 »

超价分子

超价分子是指由一种或多种主族元素形成,而且中心原子价层电子数超过8的一类分子。例如五氯化磷、六氟化硫、磷酸根离子、三氟化氯以及三碘阴离子都是典型的超价分子。超价分子的概念最早是由上述几种不符合八隅体规则的分子产生的,而自从超价分子的概念提出以来,就处于不断的争议之中。八隅体规则的例外主要有三种,缺电子分子(例如三氟化硼中心原子价电子数为6)、奇电子分子(例如一氧化氮的价电子数是奇数)和超价分子。利用分子轨道理论可以很好地解释前两种分子,然而对于超价分子,不但结构没有得到公认的解释,甚至定义都处于争论之中。.

新!!: 稀有气体和超价分子 · 查看更多 »

,半包围结构,形如“----”,内--外--,Unicode9.0暂无此字,使用表意文字描述符表达。(Oganesson,Og)是一種人工合成的超重元素,原子序為118。其最早於2002年被位於俄羅斯杜布納聯合核研究所(JINR)的科學家成功合成,並在2015年12月由國際純化學和應用化學聯合會(IUPAC)及國際純粹與應用物理學聯合會(IUPAP)所組成的聯合工作小組所確認。在元素週期表上,它位於p區,屬於18族,是第7週期中的最後一個元素。其原子序数和原子量為所有已發現元素中最高的。 Og具放射性,其原子十分不穩定。截至2012年,探測到的294Og同位素的原子一共只有4個。這使對Og特性和可能的化合物的實驗研究相當困難。目前理論計算作出了一些有關其特性的預測,其中一些是出乎意料的。例如,Og是18族成員,但它有可能並不是惰性氣體。之前它曾被認為是一氣體,但現在的預測卻表示,由於相对论量子化学性因素,它在標準狀況下會是固體。.

新!!: 稀有气体和鿫 · 查看更多 »

,左右结构,左石右田。(Tennessine,Ts)是一種人工合成的超重化學元素,原子序為117。Ts在所有人工合成元素中質量第二高,在元素週期表中位於第7週期的倒數第二位置。2010年,一個美俄聯合科學團隊在俄羅斯杜布納聯合原子核研究所首次宣佈發現Ts。2011年的另一項實驗直接生成了Ts的其中一種子同位素,這證實了2010年實驗的一部份結果;原先的實驗在2012成功得到重現。2014年,德國亥姆霍茲重離子研究中心也宣佈成功重現該實驗。2015年,負責檢驗超重元素合成實驗的IUPAC/IUPAP聯合工作小組(JWP)確認Ts已被發現,命名的提議權由美俄聯合科學團隊取得。Ununseptium是Ts的系統命名,作為元素獲得正式命名之前的臨時名稱。科學家一般在文獻中把它稱作117號元素。 在元素週期表中,Ts位於17族、所有鹵素以下。Ts的性質很可能和鹵素有顯著地差異,但其熔點、沸點和第一電離能則預計遵從週期表的規律。.

新!!: 稀有气体和鿬 · 查看更多 »

范德華方程式

--(van der Waals equation)(一译范德瓦耳斯方程),简称范氏方程,是荷兰物理学家范德华于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点在于将被理想气体模型所忽略的的气体分子自身大小和分子之间的相互作用力考虑进来,以便更好地描述气体的宏观物理性质。.

新!!: 稀有气体和范德華方程式 · 查看更多 »

胡戈·埃德曼

胡戈·埃德曼(Hugo Wilhelm Traugott Erdmann,)是一位德国化学家,他和他的博士导师雅各布·福尔哈德(Jacob Volhard)共同发现了Volhard–Erdmann环化反应。1898年,他首次提出“贵重气体”(Edelgas)。1908年,埃德曼也提出了“Thiozone”(S3分子)。埃德曼著有《化学制剂简介》(Introduction to Chemical Preparations )一书。.

新!!: 稀有气体和胡戈·埃德曼 · 查看更多 »

能量均分定理

在经典統計力學中,能量均分定理(Equipartition Theorem)是一種聯繫系統溫度及其平均能量的基本公式。能量均分定理又被稱作能量均分定律、能量均分原理、能量均分,或僅稱均分。能量均分的初始概念是熱平衡時能量被等量分到各種形式的运动中;例如,一个分子在平移運動时的平均動能應等於其做旋轉運動时的平均動能。 能量均分定理能够作出定量預測。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以計算出系統的總平均動能及勢能,從而得出系统的熱容。均分定理還能分別給出能量各個组分的平均值,如某特定粒子的動能又或是一个彈簧的勢能。例如,它預測出在熱平衡時理想氣體中的每個粒子平均動能皆為(3/2)kBT,其中kB為玻爾兹曼常數而T為溫度。更普遍地,無論多複雜也好,它都能被應用於任何处于熱平衡的经典系統中。能量均分定理可用於推導经典理想氣體定律,以及固體比熱的杜隆-珀蒂定律。它亦能夠應用於預測恒星的性質,因为即使考虑相對論效應的影響,该定理依然成立。 儘管均分定理在一定条件下能够对物理现象提供非常準確的預測,但是當量子效應變得显著時(如在足够低的温度条件下),基于这一定理的预测就变得不准确。具体来说,当熱能kBT比特定自由度下的量子能級間隔要小的時候,該自由度下的平均能量及熱容比均分定理預測的值要小。当熱能比能級間隔小得多时,这样的一個自由度就說成是被“凍結”了。比方說,在低溫時很多種類的運動都被凍結,因此固體在低溫時的熱容會下降,而不像均分定理原測的一般保持恒定。對十九世紀的物理學家而言,這种熱容下降现象是表明經典物理学不再正確,而需要新的物理学的第一個徵兆。均分定理在預測電磁波的失敗(被稱为“紫外災變”)普朗克提出了光本身被量子化而成為光子,而這一革命性的理論對刺激量子力學及量子場論的發展起到了重要作用。.

新!!: 稀有气体和能量均分定理 · 查看更多 »

鈍氣

#重定向 稀有气体.

新!!: 稀有气体和鈍氣 · 查看更多 »

鈇(IUPAC名:Flerovium,化学符号:Fl)是一種化學元素。其符號為Fl,原子序為114。 科學家至今觀測到約80個鈇原子,其中50個是直接合成的,其餘30個則是在更重元素(鉝和Og)的衰變產物中發現的。所有衰變都來自285-289Fl,一共5個質量數相鄰的同位素。已知壽命最長的同位素為289Fl,半衰期約為2.6秒,但有證據顯示存在著另一個同核異構體289bFl,其半衰期約為66秒,將會是超重元素中壽命最長的原子核。 2007年進行的化學研究指出,鈇的化學特性和鉛非常不同。由於某些相對論性效應,它是第一種表現出惰性氣體特性的超重元素。, lecture by Heinz W. Gäggeler, Nov.

新!!: 稀有气体和鈇 · 查看更多 »

藍雷射

藍光雷射(Blue laser),是指波長介於360到480奈米(nm)之間之雷射光。藍光雷射以三族的鎵氮化物為主是常見的半導體雷射二極體。這新的元件應用在很多領域上,從高密度的數據儲存到醫療應用上。.

新!!: 稀有气体和藍雷射 · 查看更多 »

闪光灯

閃光燈,是在攝影時所使用的人造光源。當按下照相機的快門之後,通常在1/1000到1/200秒之間,照亮場景。.

新!!: 稀有气体和闪光灯 · 查看更多 »

钠灯

钠灯,是指以金属钠蒸气为工作物质的照明装置,是气体放电灯的一种。钠灯的灯管内也会充填汞和稀有气体,但实际上起作用的是钠蒸气。钠被电离、激发后会发射出589nm的黄色光线,这些光线直接用于照明,而不是像荧光灯那样激发荧光物质发出白色的可见光。.

新!!: 稀有气体和钠灯 · 查看更多 »

鈹(舊譯作鋍、鑉、鋊)是一種化學元素,符號為Be,原子序為4,屬於鹼土金屬。鈹通常在宇宙射线散裂過程中產生,是宇宙中較為稀有的元素之一。所有自然界中的鈹都與其他元素結合,形成礦物,如綠柱石(海藍寶石、祖母綠)和金綠寶石等。單質鈹呈鋼灰色,輕、硬而易碎。 在鋁、銅、鐵和鎳中加入鈹作為合金材料,可以加強其物理性質。用鈹銅合金製成的工具十分堅硬,在敲擊鋼鐵表面時也不會產生火花。由於鈹的抗彎剛度、熱穩定性、熱導率都很高,密度卻很低(只有水的1.85倍),所以適合做航空航天材料,用於導彈、航天器和衛星之中。X射線等電離輻射能夠穿透低密度和低原子量的鈹,所以在X光儀器和粒子物理學實驗中都常用鈹作為窗口材料。鈹和氧化鈹可以很好地傳導熱量,因此被用於控制器械的溫度。 在處理鈹的時候,必須使用適當的措施控制粉塵,因為吸入含鈹粉塵會引致可致命的慢性過敏性鈹中毒。.

新!!: 稀有气体和铍 · 查看更多 »

铬酸铍

铬酸铍是一种无机化合物,化学式为BeCrO4。它与稀有气体存在一定的键合能力。铬酸铍被列入《危险化学品目录》(2015版),属于一般危险化学品。.

新!!: 稀有气体和铬酸铍 · 查看更多 »

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。.

新!!: 稀有气体和锂 · 查看更多 »

錒是一種放射性化學元素,符號為Ac,原子序為89。錒在1899年被發現,是首個得到分離的非原始核素。雖然釙、鐳和氡比錒更早被發現,但是科學家到1902年才分離出這些元素。在元素週期表中,錒系元素始於錒,止於鐒,一共有15種元素。 錒是一種柔軟的銀白色放射性金屬。在空氣中,錒會迅速與氧氣和水氣反應,在表面形成具保護性的白色氧化層。和大部份鑭系元素和錒系元素一樣,錒的氧化態一般是+3。在自然界中,只有少量的錒出現在鈾礦石當中,主要為同位素227Ac,並進行β衰變,半衰期為21.772年。每一噸鈾礦石約含0.2毫克的錒元素。由於錒和鑭的化學和物理特性過於接近,因此要從礦石中分離出錒元素並不現實。科學家則是在核反應爐中以中子照射鐳-226來產生錒的。 錒因為稀少、昂貴,且具放射性,所以沒有大的工業用途。目前錒被用作中子源,以及在放射線療法中作為輻射源。.

新!!: 稀有气体和锕 · 查看更多 »

自然

自然(英文:Nature),是指不断运行演化的宇宙萬物,包括生物界和非生物界两个相辅相成的体系。 人类所能理解地自然现象有:生物界的基因模因、共识主动、意识行为、社会活动和生态系统等;宇宙间的天使粒子、次原子粒子、星系星云和黑洞白洞等。 人类不能理解地宗教信仰、灵魂观念和神明信念等现象,被称为超自然现象。 从对超自然现象的探索,到对自然现象的认知,是人类逐渐理解自己、适应生存环境和丰富社会活动的过程。例如,古时,火是神明,日月星辰是超自然现象;如今,卫星、电视、电脑和手机成为了神话中的千里眼和顺风耳;区块链成了全球共识共享的无字天书。.

新!!: 稀有气体和自然 · 查看更多 »

长寿命裂变产物

長壽命裂變產物一般指由核裂變反應产生的、半衰期超過20萬年的放射性物質。這並非精確的科學定義,比如有人把某些半衰期在20年至100年間的裂變產物也稱作長壽命裂變產物。另外的人則主張把這些半衰期在20年-100年間的裂變產物稱作中等壽命裂變產物。.

新!!: 稀有气体和长寿命裂变产物 · 查看更多 »

鉀-氬年代測定法

鉀 - 氬年代測定法,簡稱K-Ar測年,是在地質年代學和考古學中,利用放射性來測定年代的方法。它是利用鉀(K)的同位素會經由放射性衰變變成氬(Ar)的性質來測量。鉀是一種常見的元素,存在於在許多物質中,如雲母,粘土礦物,火山灰。40Ar存在於液態的岩石時,會穩定的存在其中而無法逃脫,但當岩石凝固(再結晶)時,40Ar便會開始衰變。通過測量40K剩餘量的比例來計算從結晶到現在的時間長度。40K有很長半衰期,使用的方法能計算年齡長達幾千年的樣本。 在快速冷卻的熔岩中,由於冷卻過程很快的降低到鐵的居里溫度以下,使得鉀 - 氬年代測定法能夠以其為十分理想的樣品求出當時的磁場的方向和強度。由於這個方法十分理想,地磁極性的時間和尺度主要使用K-Ar測年來進行校準。.

新!!: 稀有气体和鉀-氬年代測定法 · 查看更多 »

零族元素

#重定向 稀有气体.

新!!: 稀有气体和零族元素 · 查看更多 »

NFPA 704

NFPA 704是美国消防协会(National Fire Protection Association,简称NFPA)制定的危险品紧急处理系统鉴别标准。它提供了一套简单判断化学品危害程度的系统,并将其用蓝、红、黄、白四色的警示菱形来表示。.

新!!: 稀有气体和NFPA 704 · 查看更多 »

P区元素

p区元素包括元素周期表中IIIA族元素~VIIIA族元素。 IIIA族元素又称为硼族元素,包括硼、铝、镓、铟、铊、鉨、Uht等元素; IVA族元素又称作碳族元素,包括碳、硅、锗、锡、铅、鈇、Uhq等元素; VA族元素又称作氮族元素,包括氮、磷、砷、锑、铋、镆、Uhp等元素; VIA族元素又称为氧族元素,包括氧、硫、硒、碲、钋、鉝、Uhh等元素; VIIA族元素又称卤素,包括氟、氯、溴、碘、砹、Ts、Uhs等元素; VIIIA族元素或0族元素,又称为稀有气体或惰性气体,包括氖、氩、氪、氙、氡、Og、Uho等元素。(氦为s区元素).

新!!: 稀有气体和P区元素 · 查看更多 »

P軌域

由左而右為2p、3p、4p、5p、6p軌域的立體模型 在化學與原子物理學中,p軌域(p orbital)是一種原子軌域,其角量子數為1,其磁量子數可以為-1、0或+1,且每個殼層裡中有三個p軌域,Px、Py、Pz,形狀皆相同但方向不同,每個可以容納2個電子,因此,p軌域共可以容納6個電子。 p軌域是一個很穩定的軌域,其穩定性僅次於s軌域,為能量第二低的軌域,另外由於能階交錯,若以週期的角度來看,p軌域是能量最高的軌域,也是最後填滿的軌域,其電子出現機率密度的形象是啞鈴形,呈線性對稱,換句話說,p軌域是一個雙啞鈴形或吊鐘形的軌域。.

新!!: 稀有气体和P軌域 · 查看更多 »

S-過程

S-過程,或稱為慢中子捕獲過程,是發生在相對來說中子密度較低和溫度中等條件下的恆星進行核合成過程。在這樣的條件下,原子的核心進行中子捕獲的速率相較之下就低於β負衰變。穩定的同位素捕獲中子;但是放射性同位素在另一次中子捕獲前就先衰變成為穩定的子核,這樣經由β穩定的過程,使同位素沿著同位素列表的槽線移動。S-過程大約創造了另一半比鐵重的元素,因此在星系化學演化中扮演著很重要的角色。S-過程與更快速的r-過程中子捕獲不同的是它的低速率。.

新!!: 稀有气体和S-過程 · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

新!!: 稀有气体和X射线 · 查看更多 »

抗腐蚀金属

抗腐蚀金属(Noble metal),又称惰性金属,是抗氧化和腐蚀能力极强的金属,一般在地壳中含量稀少;當中包括一些贵金属:.

新!!: 稀有气体和抗腐蚀金属 · 查看更多 »

武钢集团

中國寶武武鋼集團有限公司(簡稱武鋼集團)是中华人民共和国成立后兴建的第一个特大型钢铁联合企业,位于湖北省武汉市青山区,现为宝武鋼鐵的子公司。武钢于1955年开始建设,1958年9月13日正式投产。世界钢铁协会根據中国钢铁工业协会提供的數據,武鋼集團於2015年產量全球排名第11名。 武漢鋼鐵公司主要生产热轧卷板、冷轧卷板、镀锌板、镀锡板、冷轧硅钢片、彩色涂层板和各种型材、线材、中厚板等。此外还生产焦炭、耐火材料、化工产品、粉末冶金产品、铜硫钴精矿、水渣、氧气、稀有气体等。是中国主要的汽车板生产基地和世界主要的冷轧硅钢片生产基地。.

新!!: 稀有气体和武钢集团 · 查看更多 »

氟是一种化学元素,符号为F,其原子序数为9,是最轻的卤素。其单质在标准状况下为浅黄色的双原子气体,有剧毒。作为电负性最强的元素,氟极度活泼,几乎与所有其它元素,包括某些惰性气体元素,都可以形成化合物。 在所有元素中,氟在宇宙中的丰度排名为24,在地壳中丰度排名13。萤石是氟的主要矿物来源,1529年该矿物的性质首次被描述。由于在冶炼中将萤石加入金属矿石可以降低矿石的熔点,萤石和氟包含有拉丁语中表示流动的词根fluo。尽管在1810年就已经认为存在氟这种元素,由于氟非常难以从其化合物中分离出来,并且分离过程也非常危险,直到1886年,法国化学家亨利·莫瓦桑才采用低温电解的方法分离出氟单质。许多早期的实验者都因为他们分离氟单质的尝试受到伤害甚至去世。莫瓦桑的分离方法在现代生产中仍在使用。自第二次世界大战的曼哈顿工程以来,单质氟的最大应用就是合成铀浓缩所需的六氟化铀。 由于提纯氟单质的费用甚高,大多数的氟的商业应用都是使用其化合物,开采出的萤石中几乎一半都用于炼钢。其余的萤石转化为具有腐蚀性的氟化氢并用于合成有机氟化物,或者转化为在铝冶炼中起到关键作用的冰晶石。有机氟化物具有很高的化学稳定性,其主要用途是制冷剂、绝缘材料以及厨具(特氟龙)。诸如阿托伐他汀和氟西汀等药物也含有氟。由于氟离子能够抑制龋齿,氟化水和牙膏中也含有氟。全球与氟相关的化工业年销售额超过150亿美元。 气体是温室气体,其温室效应是二氧化碳的100到20000倍。由于碳氟键强度极高,有机氟化合物在环境中难以降解,能够长期存在。在哺乳动物中,氟没有已知的代谢作用,而一些植物能够合成能够阻止食草动物的有机氟毒素。.

新!!: 稀有气体和氟 · 查看更多 »

氡是化學元素,符號為Rn,原子序為86,屬於稀有氣體,無色、無臭、無味,具放射性,是鐳自然衰變後的間接產物,最穩定同位素為222Rn,半衰期為3.8天。在常規條件下,氡是密度最高的氣體物質之一。它同時也是唯一一種常規條件下只含放射性同位素的氣體,其輻射可以對健康造成損害。由於其放射性很強,所以針對氡的化學研究較為困難,已知化合物也很少。 釷和鈾在地球形成時已經存在。在它們緩慢衰變為鉛的過程中,氡會作為衰變鏈的一部份自然產生。釷和鈾的自然同位素半衰期都長達數十億年,因此這兩種元素連同鐳、氡等衰變產物,在今後幾千萬年後的豐度仍將和今天的程度相近。, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.

新!!: 稀有气体和氡 · 查看更多 »

氢化物

氢化物是一类氢的化合物。严格意义上讲,氢化物只包含氢同金属相互结合的化合物,但由于概念的扩大,有时它也包含水、氨和碳氢化合物等物质。.

新!!: 稀有气体和氢化物 · 查看更多 »

氣體放電燈

氣體放電燈(Gas-discharge lamps)是指利用放電效應,通過電離氣體,例如電漿,以產生光源的人造照明器具。通常,這類燈具會使用稀有氣體來作為發光之用,如氖、氬、氪、氙。其中大多數也會使用一些金屬,例如鈉。日光燈是最普遍的氣體放電燈。.

新!!: 稀有气体和氣體放電燈 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 稀有气体和氦 · 查看更多 »

氦族

#重定向 稀有气体.

新!!: 稀有气体和氦族 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 稀有气体和氩 · 查看更多 »

氪是一种化学元素,化学符号是Kr,原子序数是36,是一种无色、无臭、无味的惰性气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。 正如其他惰性气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一米的定义是用氪86發出的橙色谱线作为基准的。.

新!!: 稀有气体和氪 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

新!!: 稀有气体和氖 · 查看更多 »

气体

气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。.

新!!: 稀有气体和气体 · 查看更多 »

氙(注音:ㄒㄧㄢ,漢語拼音:xiān;舊譯作氠、氥、𣱧)是一種化學元素,化學符號為Xe,原子序為54。氙是一種無色、無味的稀有氣體。地球大氣層中含有痕量的氙。 雖然氙的化學活性很低,但是它仍然能夠進行化學反應,例如形成六氟合鉑酸氙──首個被合成的稀有氣體化合物。 自然產生的氙由8種穩定同位素組成。氙還有40多種能夠進行放射性衰變的不穩定同位素。氙同位素的相對比例對研究太陽系早期歷史有重要的作用。具放射性的氙-135是核反應爐中最重要的中子吸收劑,可通過碘-135的核衰变產生。 氙可用在閃光燈和弧燈中,或作全身麻醉藥。最早的准分子激光設計以氙的二聚體分子(Xe2)作為激光介質,而早期激光設計亦用氙閃光燈作激光抽運。氙還可以用來尋找大質量弱相互作用粒子,或作航天器離子推力器的推進劑。.

新!!: 稀有气体和氙 · 查看更多 »

汞是化学元素,俗稱水銀,臺灣亦可寫作銾,化学符号Hg,原子序数80,是種密度大、銀白色、室温下為液態的過渡金属,為d区元素。常用來製作溫度計。在相同條件下,除了汞之外是液體的元素只有溴。銫、鎵和銣會在比室溫稍高的溫度下熔化。汞的凝固點是,沸點是,汞是所有金屬元素中液態溫度範圍最小的。 汞在全世界的矿产中都有产出,主要来自朱砂(硫化汞)。摄入或吸入的朱砂粉尘都是剧毒的。汞中毒还能由接触可溶解于水的汞(例如氯化汞和甲基汞)引起,或是,吸入汞蒸气或者食用被汞污染的海产品或吸食入汞化合物引起中毒。 汞可用于溫度計、氣壓計、壓力計、血壓計、浮閥、水銀開關和其他裝置,但是汞的毒性導致汞溫度計和血壓計在醫療上正被逐步淘汰,取而代之的是酒精填充,鎵、銦、錫的填充,-zh-cn:数码;zh-tw:數位;zh-hk:數碼;-的或者基於電熱調節器的溫度計和血壓計。汞仍被用于科學研究和補牙的汞合金材料。汞也被用于發光。荧光燈中的電流通过汞蒸氣產生波長很短的紫外線,紫外線使荧光體发出荧光,從而產生可見光。.

新!!: 稀有气体和汞 · 查看更多 »

游离态

游离态是指元素存在的一种状态,与化合态相对。特别地,如果某物质只由一种元素组成,那么其状态即被称为游离态。游离态物质,即是单质,如游离铁(Fe),游离硫(S)等。通常来讲,绝大部分元素的游离态在地球上的自然条件下都不稳定,在其他物质存在时很容易与之化合,而成为化合态。无论从种类还是物质的量上来说,地球上见到的大部分物质都是化合物。除了利用蒸馏、电解等方式人工制备的单质之外,自然状态下常见的游离态元素包括空气的组成成分氧气、氮气和稀有气体,石墨和金刚石,硫磺以及一部分不活泼的金属。尽管它们也是游离态的,但它们一般不容易与其他物质化合。.

新!!: 稀有气体和游离态 · 查看更多 »

溅射

--(sputtering),也称溅镀(sputter deposition/coating),是一种物理气相沉积技术,指固體靶"target"(或源"source")中的原子被高能量離子(通常來自等離子體)撞擊而離開固體進入氣體的物理过程。 溅射一般是在充有惰性气体的真空系统中,通过高压电场的作用,使得氩气电离,产生氩离子流,轰击靶阴极,被溅出的靶材料原子或分子沉淀积累在半导体晶片或玻璃、陶瓷上而形成薄膜。 溅射的优点是能在较低的温度下制备高熔点材料的薄膜,在制备合金和化合物薄膜的过程中保持原组成不变,所以在半导体器件和集成电路制造中已获得广泛的应用。 包括:.

新!!: 稀有气体和溅射 · 查看更多 »

木星

|G1.

新!!: 稀有气体和木星 · 查看更多 »

木星大氣層

木星大氣層是太陽系內最大的行星大氣層,主要由和太陽的比例大致相同的氫分子和氦構成,其他的化學成分,包括甲烷、氨、硫化氫和水只有很少的數量。水被認為存在於大氣層的深處,所以被觀測到的數值偏低。氧、氮、硫和惰性氣體的豐度大約是太陽的三倍。 木星的大氣層沒有明確的邊界,並且逐漸轉變成為行星內部的流體。從最低處到最高處,大氣的層次為對流層、平流層、增溫層和散逸層,各層有各自的溫度梯度特徵。最底層的對流層有複雜的雲雾组成的系統,並且呈現朦朧狀,包括數層的氨、硫化氫氨和水。上層的氨雲是可見的木星表面,組織成12道平行於赤道的帶狀雲,並且被稱為噴射氣流的強大帶狀氣流(風)分隔著。這些交替的雲氣有著不同顏色:暗的雲氣稱為帶(belt),而亮的雲氣稱為區(zone)。區的溫度比帶低,是上升的氣流,而帶是下降的氣體。較淺顏色的區被认为是由氨冰形成的,但形成顏色較深的帶的物质則尚未確知。這些帶狀結構和噴流的起源也還未被瞭解,不过已存在兩種解釋的模型。淺灘模型(shallow model)認為它們是覆蓋在穩定的內部結構上的表面現象。深層模型(deep model)認為帶和噴流是被組織成一定數量的圓柱體,是深入至深層木星地函的氫分子循環顯示在木星的表面。 木星的大氣層顯示廣泛的活動現象,包括不穩定的帶狀物、旋渦(氣旋和反氣旋)、風暴和閃電。旋渦自身會呈現巨大的紅色、白色或棕色的斑點(長圓形),最大的兩個斑點是大紅斑(GRS)和也是紅色的BA橢圓。這兩個和許多其他的大斑點都是反氣旋,較小的反氣旋傾向於白色,旋渦被認為深度不會超過數百公里,相對來說是較淺的結構。位於南半球的大紅斑,是太陽系中已知最大的旋渦,它可以容下數個地球,並且已經至少存在了300年。BA橢圓在大紅斑的南邊,大小是大紅斑的三分之一,是在2000年由3個白色的橢圓合併形成的紅斑。 木星有威力強大、經常伴著閃電的風暴。風暴是潮濕的大氣對流造成水的蒸發和結露造成的結果。他們是強大上升氣流的啟動源,形成明亮和濃厚的雲層。風暴主要形成在帶的區域。木星上有少數的閃電遠比地球的更具威力,但是平均的活動水準只是可以和地球上的不相上下。.

新!!: 稀有气体和木星大氣層 · 查看更多 »

月球環形山列表 (R-S)

这是月球环形山列表的一部份,此表列举出英文名称以字母R及S开头的环形山。.

新!!: 稀有气体和月球環形山列表 (R-S) · 查看更多 »

月球隕石

月球隕石指源自月球,後來掉落地球表面的隕石。.

新!!: 稀有气体和月球隕石 · 查看更多 »

有限位勢壘

在量子力學裏,有限位勢壘是一種位勢。在壘外,位勢為 0 ,在壘內,位勢為有限值 。有限位勢壘問題專門研討在這種位勢的作用中,一個粒子的量子行為。如圖右,最簡單的有限位勢壘是方形壘,壘高是一個常數。在這條目裏,只研討這種位勢壘。 通常,在經典力學裏,一維的有限位勢壘問題會設定一個粒子,從位勢壘的左邊,往位勢壘移動。假若,粒子的能量大於位勢壘的位勢。則這粒子,在經過位勢壘的時候,因為動能的轉換為位能,速度會降低,但方向不會改變。當移動至位勢壘外時,速度又會回復至原本值。假若,粒子的能量小於位勢壘的位勢,則在與位勢壘彈性碰撞之後,這粒子會改變方向,以同樣的速率,往回移動。粒子絕對無法存在於位勢壘內或越過位勢壘。 在量子力學裏,粒子的量子行為,是取決於其波函數。由於粒子沒有被有限位勢壘束縛,粒子的能量不是離散能量譜的特殊容許值,而是大於 0 的任意值,因此不需要求算粒子的能量。在這裏,主要研究的是粒子的一維散射 。這是一個很有意思的領域。假若,粒子的能量大於位勢壘的位勢。由於往位勢壘傳播的波函數,並不是完全地透射過位勢壘,仍舊有一部分反射回來。所以,反射的機率幅大於 0 ,粒子被反射回來的機率大於 0 。假若,粒子的能量小於位勢壘的位勢,雖然波函數會呈指數地遞減,在位勢壘內,機率幅仍舊大於 0 。所以,這粒子存在於位勢壘內的機率大於 0。不止這樣,機率幅在位勢壘外的另一邊也大於 0 。假若,位勢壘的位勢並不大大的超過粒子的能量,位勢壘的壘寬也並不很寬,則粒子穿越位勢壘的機率會是很顯著的,稱這效應為量子穿隧效應。透射的可能性,稱為透射係數;反射的可能性,則稱為反射係數。.

新!!: 稀有气体和有限位勢壘 · 查看更多 »

惰性氣體

惰性氣體可能指:.

新!!: 稀有气体和惰性氣體 · 查看更多 »

海爾-博普彗星

海爾-博普彗星(英文:Comet Hale-Bopp,編號:C/1995 O1)是一顆長周期彗星,於1995年由兩位美國業餘天文學家共同發現,於1997年4月1日過近日點。 1995年7月23日,美國人艾倫·海爾和湯瑪斯·博普分別獨立發現該彗星,它是眾多由業餘天文學家發現的彗星當中,距離太陽最遠的(於木星軌道外被發現)。與哈雷彗星比較,若把兩顆彗星放在同一軌道上,海爾-博普彗星的亮度會超過前者千倍。 通常彗星在木星軌道外會比較不顯眼,但海爾-博普彗星則例外,該彗星過近日點時光度為-1.4等,縱使在城市中亦能以肉眼看見,是自1975年最亮的彗星,因此它成為了近二十年來最壯觀的彗星之一。根據哈勃太空望遠鏡的影像,海爾-博普彗星的直徑估計約40公里,屬於大型彗星。 海爾-博普彗星的出現也引起了一些恐慌。 直至2006年1月仍有日本天文愛好者在澳大利亞拍攝到該彗星的身影;經初步計算,海爾-博普彗星於二千多年後會回歸。.

新!!: 稀有气体和海爾-博普彗星 · 查看更多 »

族 (化学)

元素週期表中的列稱為族。長式週期表分為18族。 同一族中的元素(尤其是主族元素),物理性質和化學性質呈現一定的相似性。因為它們的價電子構型相似,而價電子構型一般都會決定元素的性質。當然,由於元素處在不同的週期,它們的性質也會有一定的遞變性。.

新!!: 稀有气体和族 (化学) · 查看更多 »

无极灯

无极灯(Electrodeless lamp),也称無電極燈、感应灯(induction light),是一种没有电极和灯丝的照明设备,它通过灯管外的磁环产生电磁波激发灯管内的物质工作。例如低压气体无极灯内充填的是汞蒸气和稀有气体的混合气体,汞原子被电离、激发后释放出紫外线照射到灯管壁的荧光物质上,荧光物质发出可见光。虽然也填充了汞,但其固汞含量要低于荧光灯。 其工作频率通常达到数百万赫兹,远高于普通的白炽灯和节能灯。由于省去了灯丝和电极,可以制成环形、螺旋形或管状等各种形状。其工作寿命可达近10万小时,工作效率也很高。.

新!!: 稀有气体和无极灯 · 查看更多 »

扩展元素周期表

前的元素周期表中有七個周期,並以118號元素Og終結。如果有更高原子序數的元素被發現,則它將會被置於第八周期,甚至第九周期。這額外的周期預期將會比第七周期容納更多的元素,因為經過計算新的g區將會出現。g區將容納18個元素,各周期中均存在部分填滿的g原子軌域。這種擁有八個周期的元素表最初由格倫·西奧多·西博格于1969年提出。 第八或以上周期的元素未曾被合成或于自然發現。(2008年4月,有人宣稱發現122號元素Ubb存在于自然界中,但此被廣泛認為是錯誤的。)g區内第一個元素的原子序數應該為121。根據IUPAC元素系統命名法命名為unbiunium,符號Ubu。此區域内的元素很可能高度不穩定,並具有放射性,且半衰期極短。然而稳定岛理论預測126號元素Ubh會在穩定島内,不會有核裂變,但會有α衰變。而穩定島以外還能存在多少物理上可能的元素至今仍沒有結論。 根據量子力學對於原子結構解釋的軌域近似法,g區會對應不完全填滿的g軌域。不過,自旋-軌道作用會削弱軌域近似法所得結果的正確性,這可能會發生在較大原子序的元素上。.

新!!: 稀有气体和扩展元素周期表 · 查看更多 »

扫描电子显微镜

扫描电子显微镜(Scanning Electron Microscope,缩写为SEM),简称扫描电镜,是一种电子显微镜,其通过用聚焦电子束扫描样品的表面来产生样品表面的图像。 电子与样品中的原子相互作用,产生包含关于样品的表面测绘学形貌和组成的信息的各种信号。电子束通常以图案扫描,并且光束的位置与检测到的信号组合以产生图像。扫描电子显微镜可以实现分辨率优于1纳米。样品可以在高真空,低真空,湿条件(用环境扫描电子显微镜)以及宽范围的低温或高温下观察到。 最常见的扫描电子显微镜模式是检测由电子束激发的原子发射的二次电子(secondary electron)。可以检测的二次电子的数量,取决于样品测绘学形貌,以及取决于其他因素。通过扫描样品并使用特殊检测器收集被发射的二次电子,创建了显示表面的形貌的图像。它还可能产生样品表面的高分辨率图像,且图像呈三维,鉴定样品的表面结构。.

新!!: 稀有气体和扫描电子显微镜 · 查看更多 »

普朗特数

普兰特数 \mathrm 是一個流體力學無因次的純量,以德国力学家路德维希·普朗特的名字命名,表示動黏滯係數和熱擴散率的比例,也可以視為及熱量傳輸速率的比例。 普兰特数的定義如下: 其中.

新!!: 稀有气体和普朗特数 · 查看更多 »

晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

新!!: 稀有气体和晶体 · 查看更多 »

0號元素

0號元素(Neutronium),有時又被稱為中子元素(Neutrium),是指原子中僅含中子,不含質子的一種元素,或純粹只由中子組成的物質。1926年物理學家安德利亞·馮·安德羅波夫發明了這個詞,那時甚至還沒有中子的概念。安得羅波夫將0號元素放在了元素周期表最開始,以代表其質子數比氫還要少。 然而,該術語的含義隨著時間發生了改變,從20世紀後半葉起,這個詞被用來指一種密度極大的物質,最早被用於科幻小说中,代表一種密度極大的奇特元素,直到在中子被發現後,0號元素已主要指代中子星内部存在的一種高密度、無質子的元素,目前多以多中子核物質來表示許多中子聚集在一起所形成的核素,這種物質目前僅存在於中子星内部。直到現在,這個詞的使用尚有爭議。.

新!!: 稀有气体和0號元素 · 查看更多 »

12族元素

12族元素是在元素周期表中第12族的一系列元素,它包括锌、镉、汞和鎶四个过渡金属,位铜族元素和硼族元素之间。与其它族的过渡金属相比12族的元素的熔点和沸点比较低,而且在族内原子序数越高,其熔点和沸点越低。比如汞在室温下是液态的。 这个族的元素的低熔点(尤其是汞)在于其电子排布及相对论效应。汞的电子排布是 4d10 4f14 5s2 5p6 5d10 6s2。最外的球状的電子層6s已经满了,而且由于相对论的效应这个层离原子核的距离比较近。其原因在于汞本身的原子序数已经比较高了,因此其原子核的正电荷比较高,这使得汞的电子层中的电子的运动非常快。快到在计算其运动时必须顾及到狭义相对论的现象,其质量增高,导致s轨道的大小和能量降低。 这两个效应的结果是汞的外电子层被束缚得比较紧,因此汞原子间无法形成非常强的金属键。其结果是一种在室温下液态的金属。由于汞的外层电子的惰性汞蒸汽具有惰性气体的特征。.

新!!: 稀有气体和12族元素 · 查看更多 »

18电子规则

18电子规则又称有效原子序数法则(EAN),是过渡金属簇合物化学中比较重要的一个经验规则,常用来预测金属配合物的结构和稳定性。过渡金属价电子层有5个(n)d、1个(n+1)s和3个(n+1)p轨道,共可容纳2*9.

新!!: 稀有气体和18电子规则 · 查看更多 »

18族

#重定向 稀有气体.

新!!: 稀有气体和18族 · 查看更多 »

320

320是一個在319和321之間的自然數。.

新!!: 稀有气体和320 · 查看更多 »

8a族

#重定向 稀有气体.

新!!: 稀有气体和8a族 · 查看更多 »

重定向到这里:

0族0族元素18族元素氦族元素稀有氣體稀有气体元素第零族元素貴氣體貴族氣體贵气体

传出传入
嘿!我们在Facebook上吧! »