徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

掺杂 (半导体)

指数 掺杂 (半导体)

掺杂(doping)是半导体制造工艺中,为纯的本征半导体引入杂质,使之电气属性被改变的过程。引入的杂质与要制造的半导体种类有关。轻度和中度掺杂的半导体被称作是杂质半导体,而更重度掺杂的半导体则需考虑费米统计律带来的影响,这种情况被称为简并半导体。.

19 关系: 双极性晶体管二極管共振价键理论硫酸锑磷化鎵空穴简并半导体駐波超大规模集成电路舒勃尼科夫-德哈斯效应薄膜电阻锂离子电池集成电路集成电路设计耿氏二极管PN结柴可拉斯基法掺杂杂质半导体

双极性晶体管

双极性電晶體(bipolar transistor),全称双极性结型晶体管(bipolar junction transistor, BJT),俗称三极管,是一种具有三个终端的电子器件。双极性晶体管是电子学历史上具有革命意义的一项发明,其发明者威廉·肖克利、约翰·巴丁和沃尔特·布喇顿被授予1956年的诺贝尔物理学奖。 这种晶体管的工作,同时涉及电子和空穴两种载流子的流动,因此它被称为双极性的,所以也稱雙極性載子電晶體。这种工作方式与诸如场效应管的单极性晶体管不同,后者的工作方式仅涉及单一种类载流子的漂移作用。两种不同掺杂物聚集区域之间的边界由PN结形成。 双极性晶体管由三部分掺杂程度不同的半导体制成,晶体管中的电荷流动主要是由于载流子在PN结处的扩散作用和漂移运动。以NPN電晶體為例,按照设计,高掺杂的发射极区域的电子,通过扩散作用运动到基极。在基极区域,空穴为多数载流子,而电子少数载流子。由于基极区域很薄,这些电子又通过漂移运动到达集电极,从而形成集电极电流,因此双极性晶体管被归到少数载流子设备。 双极性晶体管能够放大信号,并且具有较好的功率控制、高速工作以及耐久能力,,所以它常被用来构成放大器电路,或驱动扬声器、电动机等设备,并被广泛地应用于航空航天工程、医疗器械和机器人等应用产品中。 通斷(傳遞訊號)時的雙極晶體管表現出一些延遲特性。大多數晶體管,尤其是功率晶體管,具有長的儲存時間,限制操作處理器的最高頻率。一種方法用於減少該存儲時間是使用Baker clamp。.

新!!: 掺杂 (半导体)和双极性晶体管 · 查看更多 »

二極管

二極體(Diode),是一種具有不對稱电导的双電極电子元件。理想的二極體在正向導通时两个电极(陽極和陰極)间拥有零電阻,而反向时则有无穷大电阻,即電流只允許由單一方向流過二極體。 1874年,德国物理学家卡尔·布劳恩在卡爾斯魯厄理工學院发现了晶体的整流能力。因此1906年开发出的第一代二极管——“貓鬚二极管”是由方铅矿等矿物晶体制成的。早期的二極體还包含了真空管,真空管二极管具有两个电极 ,一个阳极和一个热式阴极。在半导体性能被发现后,二极管成为了世界上第一种半导体器件。現如今的二極體大多是使用矽来生产,鍺等其它半导体材料有时也会用到。目前最常见的结构是,一个半导体性能的结晶片通过PN结连接到两个电终端。.

新!!: 掺杂 (半导体)和二極管 · 查看更多 »

共振价键理论

在凝聚体物理学中,共振价键理论(resonating valence bond theory,简称RVB)是一种试图解释高温超导(尤其是铜氧化物超导体)的理论模型。1987年,美国物理学家菲利普·安德森和印度物理学家Ganapathy Baskaran提出了该理论。此理论认为在铜氧化物晶格中,邻近铜原子相互作用形成价键,将它们固定在位置上。然而,经过掺杂之后,这些电子可以像库柏对一样运动而形成超导现象。安德森在他1987年发表的论文中认为掺杂铜氧化物中超导的起源是(非超导态的)铜氧化物的莫特绝缘体特性。 共振价键理论是在赫巴德模型和t-J模型的基础上建立的,用于研究强关联材料。.

新!!: 掺杂 (半导体)和共振价键理论 · 查看更多 »

硫酸锑

硫酸锑是锑元素的硫酸盐,化学式为Sb2(SO4)3。这种吸湿性的物质可由金属锑或锑化合物与热的硫酸反应制得。它用于半导体的掺杂和爆炸物及烟火的生产。.

新!!: 掺杂 (半导体)和硫酸锑 · 查看更多 »

磷化鎵

磷化鎵(GaP)是鎵的磷化物,是無機化合物,也是半導體材料,其間接能隙為2.26eV(300K)。其多晶的材料為淡橙色。未摻入雜質的單晶晶片會是透明的橙色,但大量摻入雜質的晶片因為吸收自由電子,其顏色會變深。磷化鎵無味,不會溶於水。 若要變成N型半導體,需要掺杂硫或是碲,若要製作P型半導體,需要掺杂鋅。 磷化鎵常用在光學系統中,其折射率在波長262 nm (UV)時為4.30,波長550 nm (green)時為3.45,波長840 nm(IR)時為3.19。.

新!!: 掺杂 (半导体)和磷化鎵 · 查看更多 »

空穴

空穴又称--(Electron hole),在固体物理学中指共價鍵上流失一个电子,最後在共價鍵上留下空位的現象。 一個呈電中性的原子,其正電的質子和負電的電子的數量是相等的。現在由於少了一個負電的電子,所以那裡就會呈現出一個正電性的空位——電洞。當有外面一個電子進來掉進了電洞,就會發出電磁波——光子。 電洞不是正電子,電子與正電子相遇湮滅時,所發出來的光子是非常高能的。那是兩粒子的質量所完全轉化出來的電磁波(通常會轉出一對光子)。而電子掉入電洞所發出來的光子,其能量通常只有幾個電子伏特。 半导体由于禁带较窄,电子只需不多的能量就能从价带激发到导带,从而在价带中留下空穴。周围电子可以填补这个空穴,同时在原位置产生一个新的空穴,因此实际上的电子运动看起来就如同是空穴在移动。 在半导体的制备中,要在4价的本征半导体(纯硅、锗等的晶体)的基础上掺杂。若掺入3价元素杂质(如硼、镓、铟、铝等),则可产生大量空穴,获得P型半导体,又称空穴型半导体。空穴是P型半导体中的多數载流子。 E E Category:准粒子.

新!!: 掺杂 (半导体)和空穴 · 查看更多 »

简并半导体

。是杂质半导体的一种,它具有较高的掺杂浓度,因而它表现得更接近金属。22cm-3,而一般積體電路製程裡的摻雜濃度約在1013cm-3至1018cm-3之間。摻雜濃度在1018cm-3以上的半導體在室溫下通常就會被視為是一個退化態半導體。因此,重摻雜的半導體其摻雜物濃度約半導體原子的濃度的千分之一以上稱之,而輕摻雜則可能會到十億分之一的比例。-->.

新!!: 掺杂 (半导体)和简并半导体 · 查看更多 »

駐波

波(standing wave或stationary wave)為兩個波長、週期、頻率和波速皆相同的正弦波相向行進干涉而成的合成波。与行波不同,駐波的波形無法前進,因此無法傳播能量,故名之。 駐波通過時,每一個質點皆作簡諧運動。各質點振盪的幅度不相等,振幅為零的點稱為節點或波節(Node),振幅最大的點位於兩節點之间,稱為腹點或波腹(Antinode)。由於節點靜止不動,所以波形沒有傳播。能量以動能和勢能的形式交換儲存,亦傳播不出去。两列传播方向相反的相干波相遇而产生干涉,或介质沿波速的相反方向运动时,均可产生这个现象。常见的驻波现象是谐振器中,一列波与自身的反射波产生干涉而形成的。 1860年,首次发现,并创造了“驻波”(stehende Welle或Stehwelle)一词。.

新!!: 掺杂 (半导体)和駐波 · 查看更多 »

超大规模集成电路

超大规模集成电路(very-large-scale integration,縮寫:VLSI),是一种将大量晶体管组合到单一芯片的集成电路,其集成度大于大规模集成电路。集成的晶体管数在不同的标准中有所不同。从1970年代开始,随着复杂的半导体以及通信技术的发展,集成电路的研究、发展也逐步展开。计算机里的控制核心微处理器就是超大规模集成电路的最典型实例,超大规模集成电路设计(VLSI design),尤其是数字集成电路,通常采用电子设计自动化的方式进行,已经成为计算机工程的重要分支之一。.

新!!: 掺杂 (半导体)和超大规模集成电路 · 查看更多 »

舒勃尼科夫-德哈斯效应

舒勃尼科夫-德哈斯效应(Shubnikov–de Haas effect、SdH)是指在低温和强磁场条件下,材料的电导率随磁场变化出现振荡的现象,最初由和于1930年发表。舒勃尼科夫-德哈斯效应是物质内在的量子力学性质在宏观上的一种表现。舒勃尼科夫-德哈斯效应也常常被用于确定载流子的有效质量。.

新!!: 掺杂 (半导体)和舒勃尼科夫-德哈斯效应 · 查看更多 »

薄膜电阻

薄膜电阻具有均匀厚度薄膜电阻的量度。通常被用作评估半导体掺杂的结果。这种工艺的例子有:半导体的掺杂领域(比如硅或者多晶硅),以及被丝网印刷到薄膜混合微电路基底上的电阻。薄膜电阻的概念与电阻或者电阻率相对,可直接用四端點測量技術测量法(也称为四点探针测量法)来测量。 薄膜电阻用欧姆/平方(\Omega/\square)来计量,可被应用于将薄膜考虑为一个二维实体的二维系统。它与三维系统下所用的电阻率的概念对等。当使用到薄膜电阻一词的时候,电流必须沿着薄膜平面流动,而非与其垂直。 对于常规三维导体,电阻可被写为 其中\rho代表电阻率,A代表截面面积而L代表长度。截面面积可被分解为宽度W和薄膜厚度t。 当把电阻率和厚度放到一起时,电阻可被记为 R_s即为薄膜电阻。因为它被一个无量纲量所乘,所以单位依然是欧姆。而欧姆/平方这一单位被使用是因为它给出了以欧姆为单位的从一个平方区域流向相对平方区域的电阻,无论平方区域的大小如何。对于正方情形,L.

新!!: 掺杂 (半导体)和薄膜电阻 · 查看更多 »

锂离子电池

锂离子电池(Lithium-ion battery)是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。锂离子电池使用一个嵌入的锂化合物作为一个电极材料。目前用作鋰離子電池的正極材料主要常見的有:鋰鈷氧化物(LiCoO2)、錳酸鋰(LiMn2O4)、镍酸锂(LiNiO2)及磷酸鋰鐵(LiFePO4)。 這些锂离子电池與其發展產品是在消费电子领域常见的。它们是便携式电子设备中可充电电池最普遍的类型之一,具有高能量密度,无记忆效应,在不使用时只有缓慢电荷损失。除了消费类电子产品,越來越進步的锂离子电池也越来越普及,可用于军事,纯电动汽车和航空航天应用。例如,磷酸鋰鐵电池正在成为铅酸蓄电池的一种常见的替代蓄电池,在历史上铅酸蓄电池用于高尔夫球车和多用途车,但這種高效的新型電池已經能夠突破舊有鋰電池與鉛酸電池的各種缺點,達成全面替代的目標。 此外,锂离子电池容易与下面两种电池概念混淆:.

新!!: 掺杂 (半导体)和锂离子电池 · 查看更多 »

集成电路

集成电路(integrated circuit,縮寫:IC;integrierter Schaltkreis)、或称微电路(microcircuit)、微芯片(microchip)、晶--片/芯--片(chip)在电子学中是一种把电路(主要包括半導體裝置,也包括被动元件等)小型化的方式,並時常制造在半导体晶圓表面上。 前述將電路製造在半导体晶片表面上的積體電路又稱薄膜(thin-film)積體電路。另有一種(thick-film)(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到基板或线路板所构成的小型化电路。 本文是关于单片(monolithic)集成电路,即薄膜積體電路。 從1949年到1957年,維爾納·雅各比(Werner Jacobi)、杰弗里·杜默 (Jeffrey Dummer)、西德尼·達林頓(Sidney Darlington)、樽井康夫(Yasuo Tarui)都開發了原型,但現代積體電路是由傑克·基爾比在1958年發明的。其因此榮獲2000年諾貝爾物理獎,但同時間也發展出近代實用的積體電路的罗伯特·诺伊斯,卻早於1990年就過世。.

新!!: 掺杂 (半导体)和集成电路 · 查看更多 »

集成电路设计

集成电路设计(Integrated circuit design, IC design),根据当前集成电路的集成规模,亦可称之为超大规模集成电路设计(VLSI design),是指以集成电路、超大规模集成电路为目标的设计流程。.

新!!: 掺杂 (半导体)和集成电路设计 · 查看更多 »

耿氏二极管

,或称转移电子器件(transferred electron device, TED)是一种在高频率电子学中应用的二极管形式。与一般的二极管同时具有N型区和P型区不同,它只由N型杂质半导体材料组成。耿氏二极管具有三个区域:两端是N型重掺杂区,介于二者中间的是一层轻掺杂的薄层。当电压施加在耿氏二极管的两端时,中央薄层处的电梯度(electrical gradients,類似电化学梯度)最大。由于在导体材料中,电流与电压成正比,导电性将会产生。最终,中央薄层处会产生较高的电场值,从而得到较高的电阻,阻止导电性的进一步增加,电流会开始下降。这意味着耿氏二极管具有负阻(Negative resistance)效应,或称负微分电阻(Negative differential resistance)。 利用负微分电阻性质与中间层的时间特性,可以让直流电流通过耿氏二极管,从而形成一个弛豫振荡器(Relaxation oscillator)。在效果上,耿氏二极管中的负微分电阻会抵消的部分真实存在的正阻值,这样就可以使电路等效成一个“零电阻”的电路,从而获得无穷振荡。振荡频率部分取决于耿氏二极管的中间层,不过也可以通过改变其他外部因素来改变振荡频率。耿氏二极管被用来构造10 GHz或更高(例如太赫兹级别)的频率范围,这时共振腔常被用来控制频率。共振腔可以是波导等形式。频率以机械进行调谐(如通过改变共振腔的参数)。 用砷化镓(GaAs)材料制造的耿氏二极管可以达到200 GHz的频率,而氮化镓的耿氏二极管可以获得高达3 THz的频率。 耿氏二极管的理论基础是耿氏效应(Gunn effect),两个命名中“耿氏”都是来自于IBM物理学家,他在1962年发现了这一效应。当时他反对将实验中的一些不连续现象视为雜訊,他对这现象做了一些研究。1965年6月,贝尔实验室的Alan Chynoweth指出,只有电子在能谷间的转移可以解释这一实验现象。 对此现象的解释参见理论。 耿氏效应及其与的联系,在1970年的一些专著(例如转移电子器件、以及后来电荷传输非线性波动方法等领域的书籍)中被展现。其他一些涉及耿氏二极管的书籍在研究过程中出版,这些资料可以在图书馆等文献机构查阅到。.

新!!: 掺杂 (半导体)和耿氏二极管 · 查看更多 »

PN结

一塊半導體晶體一側摻雜成P型半導體,另一側摻雜成N型半導體,中間二者相連的接觸面稱為PN结()。PN结是電子技術中許多元件,例如半導體二極管、雙極性晶體管的物质基础。.

新!!: 掺杂 (半导体)和PN结 · 查看更多 »

柴可拉斯基法

柴可拉斯基法(简称柴氏法 Czochralski process),又称直拉法,是一种用来获取半导体(如硅、锗和砷化镓等)、金属(如钯、铂、银、金等)、盐、合成宝石单晶材料的晶体生长方法。这个方法得名于波兰科学家扬·柴可拉斯基(Jan Czochralski),他在1916年研究金属的结晶速率时,发明了这种方法。後來,演變為鋼鐵工廠的標準製程之一。 直拉法最重要的应用是晶、晶棒、单晶硅的生长。其他的半导体,例如砷化镓,也可以利用直拉法进行生长,也有一些其他方法(如布里奇曼-史托巴格法)可以获得更低的晶体缺陷密度。.

新!!: 掺杂 (半导体)和柴可拉斯基法 · 查看更多 »

掺杂

掺杂或搀杂可以指:.

新!!: 掺杂 (半导体)和掺杂 · 查看更多 »

杂质半导体

杂质半导体(extrinsic semiconductor)又称外质半导体,是掺杂了杂质的半导体,即在本征半导体中加入掺杂物,使得其电学性质较无杂质半导体发生了改变。.

新!!: 掺杂 (半导体)和杂质半导体 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »