徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

自旋和铷

快捷方式: 差异相似杰卡德相似系数参考

自旋和铷之间的区别

自旋 vs. 铷

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。. 銣是一種化學元素,符號為Rb,原子序数為37。銣是種質軟、呈銀白色的金屬,屬於鹼金屬,原子量為85.4678。單質銣的反應性極高,其性質與其他鹼金屬相似,例如會在空氣中快速氧化。自然出現的銣元素由兩種同位素組成:85Rb是唯一一種穩定同位素,佔72%;87Rb具微放射性,佔28%,其半衰期為490億年,超過宇宙年齡的三倍。 德國化學家羅伯特·威廉·本生和古斯塔夫·基爾霍夫於1861年利用當時的新技術火焰光譜法發現了銣元素。 銣化合物有一些化學和電子上的應用。銣金屬能夠輕易氣化,而且它有特殊的吸收光譜範圍,所以常被用在原子的激光操控技術上。 銣並沒有已知的生物功用。但生物體對銣離子的處理機制和鉀離子相似,因此銣離子會被主動運輸到植物和動物細胞中。.

之间自旋和铷相似

自旋和铷有(在联盟百科)6共同点: 原子中子碱金属磁場發射光譜順磁性

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

原子和自旋 · 原子和铷 · 查看更多 »

中子

| magnetic_moment.

中子和自旋 · 中子和铷 · 查看更多 »

碱金属

碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

碱金属和自旋 · 碱金属和铷 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

磁場和自旋 · 磁場和铷 · 查看更多 »

發射光譜

射光譜是當一個元素被激發(加熱)時,在相對於電磁輻射的每一個頻率中,某些頻率的輻射強度增加的現象。 當化學元素中的電子被激發時,它會躍遷至能量較高的軌道上,而當這個電子離開激態,返回低能量的軌道時,能量會被再輻射出來,分離出來的發射譜線就是所提到的波長。注意,輻射的譜線頻率會比原來的頻率寬一些,這是譜線致寬的效應。 這個項目雖然經常提到可見光的發射光譜,但實際上它存在於整個的電磁頻譜,從低能量的無線電波到高能量的γ射線都有。 發射光譜可以用來確定材料的組成,因為在週期表上的每一種化學元素都有各自不同的發射光譜。例如,分析接收到的光譜可以確認恆星的組成。 當光線通過冷且稀薄的氣體物質會產生吸收光譜,在氣體中的原子會吸收特定的頻率,當他們再輻射出來時不會遵循原來被吸收光子的方向前行進,在原先的光譜上形成暗線(光線被吸收)。由被激發的原子輻射出來的光,不會朝向觀測者,因此這條譜線會從原來的連續光譜中消失。.

發射光譜和自旋 · 發射光譜和铷 · 查看更多 »

順磁性

順磁性(Paramagnetism)指的是一種材料的磁性狀態。有些材料可以受到外部磁场的影响,产生跟外部磁場同樣方向的磁化向量的特性。这样的物质具有正的磁化率。与順磁性相反的现象被称为抗磁性。.

自旋和順磁性 · 铷和順磁性 · 查看更多 »

上面的列表回答下列问题

自旋和铷之间的比较

自旋有87个关系,而铷有95个。由于它们的共同之处6,杰卡德指数为3.30% = 6 / (87 + 95)。

参考

本文介绍自旋和铷之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »