徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

普朗克時間

指数 普朗克時間

在物理學的普朗克單位制裏,普朗克時間(Planck time)是時間的基本單位,是光波在真空裏傳播一個普朗克長度的距離所需的時間。普朗克單位制是一種自然單位制,因馬克斯·普朗克而得名;普朗克最先提出普朗克單位制的概念。 普朗克時間t_P以方程式定義為 其中,\hbar.

25 关系: 原秒可觀測宇宙万有引力常数廣義相對論弗里德曼方程國家標準技術研究所哈勃空间望远镜哈勃超深空光速因次分析真空物理学马克斯·普朗克黑体量子引力量子泡沫自然单位制標準差时间数学物理普朗克常数普朗克單位制普朗克黑体辐射定律普朗克長度

原秒

阿秒(attosecond),符號 as,是一種時間的國際單位,為 10-18 秒,或 1/1000 飛秒。比例上,一阿秒之於一秒,如同一秒之於 317.1 億年,約為宇宙年齡的兩倍。.

新!!: 普朗克時間和原秒 · 查看更多 »

可觀測宇宙

可观测宇宙(observable universe)是一个以观测者作为中心的球体空间,小得足以让观测者观测到该范围内的物体,也就是说物体发出的光有足够时间到达观测者。截至2013年對宇宙年齡最精確的估計是年。 但由於宇宙的膨脹,可觀測宇宙的半徑並不是固定的138億光年,人類所觀測的古老天體當前的距離比起其原先的位置要遙遠得多(以固有距離(proper distance)來衡量,固有距離在現在的時點和同移距離是相等的)。 现在推测可观测宇宙半径约为465亿光年,直径约为930亿光年。 根據宇宙學原理,從任何方向到可觀測宇宙邊緣的距離大致是相等的。 “可观测”在这个意义上与现代科技是否容许我们探测到物体发出的辐射无关,而是指物体发出的光线或其他辐射可能到达观测者。实际上,我们最远只能观测到宇宙从不透明变为透明的临界最后散射面(surface of last scattering),但在未來的技術下,我们有可能觀測到更古老的宇宙中微子背景輻射,甚至可能能够从重力波的探测推断这个时间之前的信息。有時候天體物理學家將「可視宇宙」(visible universe)和「可觀測宇宙」相區分,前者只包括了再復合時期以來的信息而後者則包括了自宇宙膨脹(傳統宇宙學的大爆炸及現代宇宙學的暴脹時期結束)以來發出的信息。經過計算,到CMBR粒子的同移距離(可視宇宙的半徑)大約為140億秒差距(約457億光年),而到可觀測宇宙邊緣的同移距離大約為143億秒差距(約466億光年),大約比前者大2%。.

新!!: 普朗克時間和可觀測宇宙 · 查看更多 »

万有引力常数

万有引力常数(记作 G ),是一个包含在对有质量的物体间的万有引力的计算中的实验物理常数。它出现在牛顿的万有引力定律和爱因斯坦的广义相对论中。也称作重力常數或牛顿常数。不应将其与小写的 g 混淆,后者是局部引力场(等于局部引力引起的加速度),尤其是在地球表面。 根据万有引力定律,两物体间的吸引力( F )与二者的质量( m1 和 m2 )的乘积成正比,而与他们之间的距离( ''r'' )的平方成反比: 其中的比例常数 G 即是万有引力常数。 万有引力常数大概是物理常数中最难测量的了。.

新!!: 普朗克時間和万有引力常数 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 普朗克時間和廣義相對論 · 查看更多 »

弗里德曼方程

弗里德曼方程(英文:Friedmann equations)是广义相对论框架下描述空间上均一且各向同性的的一组方程。它们最早由亚历山大·弗里德曼在1922年得出 (English translation in),他通过在弗里德曼-勒梅特-罗伯逊-沃尔克度规下对具有给定质量密度\rho\,和压力p\,的流体的能量-动量张量应用爱因斯坦引力场方程而得到。而具有负的空间曲率的方程则由弗里德曼在1924年得到 (English translation in)。.

新!!: 普朗克時間和弗里德曼方程 · 查看更多 »

國家標準技術研究所

美国国家标准技术研究所(National Institute of Standards and Technology,简写为NIST)的前身为国家标准局(NBS,1901年~1988年),是一家测量标准实验室,属于美国商务部的非监管机构。该研究所的官方使命为: NIST雇佣有大约2900名科学家、工程师、科技工作者,以及后勤和管理人员,大约1800名辅助工作人员(来自美国公司和国外的工程师和研究员),另外还有1400名专家分布在国内约350个附属研究中心里。.

新!!: 普朗克時間和國家標準技術研究所 · 查看更多 »

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

新!!: 普朗克時間和哈勃空间望远镜 · 查看更多 »

哈勃超深空

哈伯深領域(英文:Hubble Ultra Deep Field,HUDF)是一張外太空照片,顯示的是天爐座的一小部份。該照片由哈勃空间望远镜於2003年9月24日至2004年1月16日期間得到的數據累積而成的,相當於113天的曝光。它是截至2006年為止以可見光拍攝的最深遠的宇宙影象,顯示的是超過130億年前的情況。此中估計有10,000個星系。 哈勃超深空中所顯示的範圍為3平方角分,只有全天空12,700,000分之一的面積,位於赤經3h 32m 40.0s,赤緯-27°47' 29"(J2000)天爐座的一小片天區。而照片的左上角則指向天球的北方。選擇這個範圍的理由是因為附近(約為滿月十分之一大小的面積)沒有較光亮的星體。雖然通過紅外線,在地面望遠鏡也能觀測到照片中大部份的物體,但只有通过哈勃空间望远镜才能以可見光觀測這些遙遠的目標。 隨著哈勃空间望远镜在軌道運行共400圈,照片是由800次曝光合成,當中先進巡天照相機(Advanced Camera for Surveys)及近紅外線照相機和多目標分光儀(Near Infrared Camera and Multi-Object Spectrometer)分別累積共11.3天及4.5天的拍攝時間。照片中最暗的星體只有30等,即望远镜每分鐘只接收到一粒來自星體的光子。 根據大爆炸理論,宇宙的年齡有限;而因為遠處星系的光線需要較長時間才到達地球,哈勃超深空有助於人類了解宇宙形成初期星系形成及合併的情況。另外因為照片所呈現的星系都是較為年輕的,故亦發現其性質與地球附近較年老的星系有所不同,這些早期星系發出的光線多為紫外光。然而拍攝的光波波長,因相對論性都卜勒效應關係,照片實際上是拍攝光譜中紅外線部份。.

新!!: 普朗克時間和哈勃超深空 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 普朗克時間和光 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 普朗克時間和光速 · 查看更多 »

因次分析

物理量的量綱可以用來分析或檢核幾個物理量之間的關係,這方法稱為量綱分析(dimensional analysis)。通常,一個物理量的量綱是由像質量、長度、時間、電荷量、溫度一類的基礎物理量綱結合而成。例如,速度的量綱為長度每單位時間,而計量單位為公尺每秒、英里每小時或其它單位。量綱分析所根據的重要原理是,物理定律必需跟其計量物理量的單位無關。任何有意義的方程式,其左手邊與右手邊的量綱必需相同。檢查有否遵循這規則是做量綱分析最基本的步驟。 推導獲得的方程式或計算結果是否基本上合理,慣常可以用量綱分析來檢察。對於較複雜的物理狀況,量綱分析也可以用來構築合理假定(參見關聯模型),然後,做嚴格的實驗加以測試,或用已發展成功的理論仔細檢試。量綱分析能夠按照各種物理量的量綱,將它們詳細分類。.

新!!: 普朗克時間和因次分析 · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

新!!: 普朗克時間和真空 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 普朗克時間和物理学 · 查看更多 »

马克斯·普朗克

克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.

新!!: 普朗克時間和马克斯·普朗克 · 查看更多 »

黑体

黑体可以指:.

新!!: 普朗克時間和黑体 · 查看更多 »

量子引力

量子引力,是對引力場進行量子化描述的理論,屬於萬有理論之一。研究方向主要嘗試結合廣義相對論與量子力學,是當前物理學尚未解决的問題。當前主流嘗試理論有:超弦理論、迴圈量子重力理論。引力波的发现,为量子引力理论提供了新的佐证。.

新!!: 普朗克時間和量子引力 · 查看更多 »

量子泡沫

量子泡沫(Quantum foam),又稱時空泡沫(space time foam),是一種物理概念,最早在1955年由約翰·惠勒所提出量子力學中的一個概念。量子泡沫即為誕生前宇宙的概念化。 在量子泡沫的普朗克尺度(10-35公尺)裡,時空不再是平滑的,許多不同的形狀會像泡沫一樣隨機浮出,又隨機消失,這樣在微小世界的能量起伏,就是所謂的「量子漲落」。在量子漲落中形成的小通道,就是所謂的蟲洞,而這些量子蟲洞則又可以連接到周遭眾多的起伏泡沫,那些量子泡沫就是幼宇宙。 量子泡沫可用於極小尺度(普朗克長度量級)下量子振蕩的定性描述。在這麼小的尺度下海森堡的不確定性原理允許能量暫時產生並瞬間產生粒子和反粒子,然後在不違反物理守恆定律下互相湮滅,由於此處討論的時間和空間規模極小,且加上虛擬粒子增加的能量,根據愛因斯坦的廣義相對論,表明,在足夠小的範圍內,這些波動的能量將是大到足以使在較大的尺度上可觀測到相對平滑時空的顯著偏離,有如泡沫一般,因此,在量子泡沫裡,空間沒有一定的結構,對於各種不同的形狀和曲度都有不同的機率。.

新!!: 普朗克時間和量子泡沫 · 查看更多 »

自然单位制

在物理學裏,自然單位制(natural unit)是一種建立於基礎物理常數的計量單位制度。例如,電荷的自然單位是單位電荷 e 、速度的自然單位是光速 c ,都是基礎物理常數。純自然單位制必定會在其定義中,將某些基礎物理常數歸一化,即將這些常數的數值規定為整數1。.

新!!: 普朗克時間和自然单位制 · 查看更多 »

標準差

標準差(又稱标准偏差、--,,缩写SD),数学符号σ(sigma),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。測量到分佈程度的結果,原則上具有兩種性質:.

新!!: 普朗克時間和標準差 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 普朗克時間和时间 · 查看更多 »

数学物理

数学物理是数学和物理学的交叉领域,指应用特定的数学方法来研究物理学的某些部分。对应的数学方法也叫数学物理方法。 数学和物理学的发展历史上一直密不可分。许多数学理论是在物理问题的基础上发展起来的;很多数学方法和工具通常也只在物理学中找到实际应用。.

新!!: 普朗克時間和数学物理 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 普朗克時間和普朗克常数 · 查看更多 »

普朗克單位制

普朗克單位制是一種計量單位制度,由德國物理學家馬克斯·普朗克最先提出,因此命名為普朗克單位制。這種單位制是自然單位制的一個實例,經過特別設計,使得某些基礎物理常數的值能夠簡化為1,這些基礎物理常數是.

新!!: 普朗克時間和普朗克單位制 · 查看更多 »

普朗克黑体辐射定律

在物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律,英文:Planck's law, Blackbody radiation law)描述,在任意温度T\,下,从一个黑体中发射出的电磁辐射的辐射率与频率彼此之間的关系。在这裏,辐射率是频率\nu的函数: 如果写成波长的函数,則辐射率为 其中,I_或I_是輻射率,\nu \,是频率,\lambda \,是波长,T \,是黑体的温度,h \,是普朗克常数,c \, 是光速,k \, 是玻尔兹曼常数。 注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而I_(\nu,T)和I_(\lambda,T)并不等价。它们之间存在有如下关系: 通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换: 在低頻率極限,普朗克定律趨於瑞利-金斯定律,而在高頻率極限,普朗克定律趨於維恩近似。 馬克斯·普朗克於1900年發展出普朗克定律,並從實驗結果計算出所涉及的常數。後來,他又展示,當表達為能量分布時,該分布是電磁輻射在熱力學平衡下的唯一穩定分布。當表達為能量分布時,該分布是熱力學平衡分布家族的成員之一,其它成員為玻色–愛因斯坦分布、費米–狄拉克分布、麦克斯韦-玻尔兹曼分布等等。.

新!!: 普朗克時間和普朗克黑体辐射定律 · 查看更多 »

普朗克長度

普朗克長度,是長度的自然單位,以\ell_P作為標記。.

新!!: 普朗克時間和普朗克長度 · 查看更多 »

重定向到这里:

普朗克时间蒲朗克时间蒲朗克時間

传出传入
嘿!我们在Facebook上吧! »