徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

旋磁比

指数 旋磁比

在物理學中,旋磁比(gyromagnetic ratio,也稱為磁旋比,magnetogyric ratio,常用\gamma表示)定义为一個自旋不為零的粒子(此時下文中的磁矩與角動量指自旋磁矩和自旋角動量)或一個體系的磁矩與角動量之比(因而稱磁旋比),對於前一種情況,也等於粒子在外磁場作用下,磁矩作拉莫爾進動時的角頻率與外加磁場的磁感應強度之比(因而稱旋磁比)。在磁共振領域中廣泛用到此概念。.

9 关系: 玻尔磁子磁共振磁感应强度物理学頻率角频率電子自旋共振核磁共振拉莫爾進動

玻尔磁子

玻尔磁子(Bohr magneton),或稱--,以物理學家尼尔斯·玻尔為名,是根據量子力學理論所得,與電子相關的磁矩基本單位,是一項常數。其用在電子軌域角動量及自旋角動量相關磁性的表示。 電磁學常用的單位有兩種,一種是國際單位制,另一種則是厘米-克-秒制。因此,波耳磁元的定義也有兩種不同的定義。 在國際標準公制下,其定義為: 而在高斯制下,其定義為: 其中e為電子電荷,\hbar為約化普朗克常數,me為電子質量,而c則為光速。.

新!!: 旋磁比和玻尔磁子 · 查看更多 »

磁共振

磁共振是指具有磁矩的微观粒子体系在恒定外磁场中,磁矩相对于磁场方向只能取几种量子化的方位;若垂直于恒定磁场方向加一交变磁场,在适当条件下能改变磁矩的方位,使磁矩体系选择地吸收特定频率的交变磁场能量的现象。 是自旋磁共振現象;其意義上較廣,包含有:.

新!!: 旋磁比和磁共振 · 查看更多 »

磁感应强度

磁感应强度也被称为磁通量密度或磁通密度,是一个表示贯穿一个标准面积的磁通量的物理量,其符号是B,國際單位制導出單位是T。 此物理量也常被稱為磁場,例如在核磁共振、磁振造影等領域,此命名歧異參見磁場。.

新!!: 旋磁比和磁感应强度 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 旋磁比和物理学 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

新!!: 旋磁比和頻率 · 查看更多 »

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

新!!: 旋磁比和角频率 · 查看更多 »

電子自旋共振

電子順磁共振(electron paramagnetic resonance,EPR),又称電子自旋共振(electron spin resonance,ESR),是屬於自旋1/2粒子的電子在靜磁場下发生的磁共振現象。因为類似靜磁場下自旋1/2原子核核磁共振的現象,又因利用到電子的順磁性,故曾稱作“電子順磁共振”。 由於分子中的電子多數是成對存在,根據泡利不相容原理,每个電子对中的两个电子必為一個自旋向上,另一個自旋向下,所以磁性互相抵消。因此只有拥有不成對電子存在的粒子(例如過渡元素中重金屬原子或自由基),才能表現磁共振。 雖然电子自旋共振的原理与核磁共振的类似,但由於電子的質量遠輕於原子核的质量,所以电子有较大的磁矩。以氫原子核(質子)為例,電子磁矩強度是其659.59倍。因此對於電子,磁共振所在的拉莫頻率通常需要透過減弱主磁場強度來使之降低。但即使如此,拉莫頻率通常所在波段仍比核磁共振拉莫頻率所在的射頻範圍還要高(通常是在微波的波段),因此有穿透力以及對帶有水分子的樣品有加熱可能的潛在問題,在進行人體造影時則需要改變方法。舉例而言,0.3T的主磁場下,電子共振頻率發生在8.41GHz,而對於常用的核磁共振核種——質子而言,在這樣強度的磁場下,其共振頻率仅為12.77MHz。.

新!!: 旋磁比和電子自旋共振 · 查看更多 »

核磁共振

核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,可以進行分子科學的研究,如分子結構、動態等。.

新!!: 旋磁比和核磁共振 · 查看更多 »

拉莫爾進動

在物理學中,拉莫尔进动(Larmor precession,以约瑟夫·拉莫尔的名字命名)是指电子、原子核和原子的磁矩在外部磁场作用下的进动。外部磁场对磁矩施加了一个力矩: 其中\vec为力矩,\vec为角动量,\vec为外部磁场,\times为矢量积,\gamma为旋磁比,它是磁矩与角动量矢量的比值,角动量\vec绕外磁场方向进动,其角频率称为拉莫尔频率: 其中\omega为角频率,B为磁感应强度。 Lev Landau and Evgeny Lifshitz在一篇1935年出版的著名论文中预言了由于拉莫尔进动导致的铁磁共振的存在,这在1946年被J.

新!!: 旋磁比和拉莫爾進動 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »