徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

地球和月球的起源

快捷方式: 差异相似杰卡德相似系数参考

地球和月球的起源之间的区别

地球 vs. 月球的起源

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。. 月球的起源泛指任何解釋地球的天然衛星月球起源的理論,目前居於主導地位的是巨大撞擊假說(GIH)。然而,月球起源研究仍在持續進行,並且仍有大量的變化。其它起源方案亦包括了捕獲、分裂、孿生(凝結理論)、星子(類似小行星的小天體)碰撞、和碰撞理論。 標準的GIH提出一個火星大小、稱為忒伊亞的天體撞擊地球,創造了大量碎片環繞地球,然後形成地月系統。然而,月球的氧同位素比率基本上與地球相同。氧同位素的比率,可以非常精確的測量,是太陽系每個天體獨特且鮮明。如果忒伊亞曾經是一個獨立存在的天體,作為噴出的混合材料,它可能會有與地球不同的氧同位素。此外,月球的鈦同位素比率(50Ti /47Ti)也與地球非常接近(在4ppm內),這點顯示碰撞物體的質量可能只是月球的一小部分。.

之间地球和月球的起源相似

地球和月球的起源有(在联盟百科)20共同点: 原行星同位素大碰撞說大气层太阳系宇宙速度岩漿希腊神话微行星後期重轟炸期忒亚火星纽约时报衛星阿波罗计划潮汐加速潮汐鎖定月球

原行星

原行星是在原行星盤內大小如同月球尺度的胚胎行星。它們應該是由公里尺度的微行星因彼此的重力相互吸引與碰撞而形成的。根據太陽星雲形成的理論,原行星在軌道輕微的擾動下和因此導致的巨大撞擊與碰撞下逐漸形成真正的行星。 在太陽系中,一般認為微行星的碰撞形成了數百個行星胚胎。這些天體類似穀神星和冥王星,其質量約1022到1023公斤,直徑約數千公里。之後數億年中行星胚胎之間彼此碰撞。目前仍無法得知行星胚胎之間互相碰撞而形成行星的詳細過程,但一般認為最初的碰撞可能將第一代的行星胚胎摧毀,被數量較少,但體積較大的第二代胚胎取代。這樣的過程會持續到撞擊結束,最後只有少數胚胎會形成行星。 早期的原行星有較多的放射性元素,這些數量由於放射性衰變,會隨著時間逐漸減少。來自放射線的熱、撞擊和重力的壓力會使原行星發生局部的熔化,有助於它們增長成為行星。在熔化的區域,較重的元素會向中心下沉,較輕的元素會上昇至表面;這種過程就是所知的行星分化。一些隕石的結構中也顯示出有些小行星也發生過分化的作用。 形成月球的大碰撞說假設是一個巨大的,被稱為忒亞的原行星,在太陽系形成的早期與地球發生碰撞。 在內太陽系中,至少有三顆保留原始特徵的原行星存在,即穀神星、智神星和灶神星。而司琴星也有類似原行星的特徵。柯伊伯带中的矮行星也被認為是原行星。 2013年2月,天文學家首次直接觀測到遙遠恆星外圍由塵埃和氣體組成的盤面內原行星正在形成。.

原行星和地球 · 原行星和月球的起源 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

同位素和地球 · 同位素和月球的起源 · 查看更多 »

大碰撞說

大碰撞說(Giant impact hypothesis),是一種解釋月球形成原因及過程的假說,也可用於探討金星及火星等类地行星的衛星生成。該假說認為在大約45億年前(或太陽系形成後約2,000萬到1億年前的冥古宙),地球和一顆火星大小的天體發生撞擊,殘留的碎片形成了月球。這顆撞擊地球的天體被稱為忒伊亞(Theia),這名字是希臘泰坦神話裡月神塞勒涅的母親之名。 大碰撞說是目前最受青睞的科學假說,支持的證據包括:地球自轉和月球公轉方向相同、月球曾擁有熔融態的表面、月球擁有較小的鐵核且其密度比地球低、由其他行星系統發生類似碰撞所得到的證據(即導致岩屑盤)、符合主流的太陽系形成理論。最後,月球和地球岩石擁有的穩定同位素比率是相同的,這意味著相同的起源。 儘管為目前最佳的月球形成假說,大碰撞說仍存在一些缺陷。理論上,大碰撞產生的高溫會形成全球性的岩漿海,然而,沒有證據能證明較重的物質因此沈入地幔。目前,沒有模型能對於從發生大碰撞到形成月球的過程作出完美解釋。其他問題包括,月球何時開始失去揮發性物質、以及同樣發生過碰撞的金星為何沒有衛星。.

地球和大碰撞說 · 大碰撞說和月球的起源 · 查看更多 »

大气层

大氣層,均源自及也許是一層受到重力吸引聚攏在擁有巨大質量天體周圍的氣體,而如果重力夠大且氣體的溫度夠低,就能長期保留住。有些行星擁有許多不同的主要氣體,並且有非常深厚的大氣(參見氣體巨星)。 恆星大氣層這個名詞描述的是恆星外面的區域,典型的範圍是從不透明的光球開始向外的部份。相對來說是低溫的恆星,在它們外面的大氣層也許可以形成複合的分子。地球大氣層,不僅包含有多數有機體呼吸所使用的氧和植物與海藻和藍綠藻行光合作用所使用的二氧化碳,也保護生物的基因免於受到太陽紫外線輻射的傷害。它目前的組成是古大氣層生活在其中的有機體經過數億年的生物化學修改後的結果。.

地球和大气层 · 大气层和月球的起源 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

地球和太阳系 · 太阳系和月球的起源 · 查看更多 »

宇宙速度

宇宙速度(cosmic velocity),是指物體從地球出發,要脫離天體重力場的四個較有代表性的初始速度的統稱。計算宇宙速度的基本公式如下: 航天器按其任務的不同,需要達到這四個宇宙速度的其中一個。例如人類第一個發射成功的星際探測器月球1号就需要達到第二宇宙速度,才能擺脫地球重力。而旅行者2号則需要達到第三宇宙速度,才能離開太陽系。 宇宙速度的概念也可应用于在其他天体發射航天器的情況。例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。.

地球和宇宙速度 · 宇宙速度和月球的起源 · 查看更多 »

岩漿

岩漿是熔化的岩石,通常位於地表之下的岩漿房中。岩漿是一種複雜的高溫硅酸盐溶液,是各種火成岩的前身,火成岩是由岩漿冷卻而成的。岩漿可以侵入鄰近的地殼岩石或是冒出地表。 岩漿存在於650℃到1400℃的溫度中。可低至650℃,高至1400℃。熔岩中含有1~8%的挥发性物质。 岩漿處於高壓之中,有時會經由火山口(或譯火山管、火山流口、火山道)以熔岩流或是以火山碎屑物的火山噴出物的形式冒出。 這些火山噴發的產物通常包括了從沒到過地表的液體、結晶體及溶解氣體等。岩漿會在地殼中各自分離的岩漿庫內集結,不同地方的岩漿組成成份會稍有不同。 這些地方包括了隱沒帶、裂谷帶、中洋脊或是地函熱柱的熱點之上。只有在地球的軟流圈內的特定條件之下岩漿才會形成。.

地球和岩漿 · 岩漿和月球的起源 · 查看更多 »

希腊神话

希臘神話(希腊语:ἡ Ἑλληνικὴ Μυθολογία)即口頭或文字上一切有關古希臘人的神、英雄、自然和宇宙歷史的神話。希臘神話是古希臘宗教的組成部分之一。現代的學者更傾向於研究神話,因為其實際上反映了古希臘的宗教和政治制度、文明以及這些神話產生的本質原因。一些神學家甚至認為古希臘人創造這些神話是為了解釋他們所遇到所有的事件。 希臘神話涵及大量傳說故事,其中很多都通過希臘藝術品來表現,比如古希臘的陶器繪畫和浮雕藝術。這些傳說意在解釋世界的本源和講述眾神和英雄們的生活和冒險以及對當時的生物的特殊看法。這些神話開始於口耳相傳,今日所知的希臘神話或傳說大多來源於古希臘文學。已知的最早的古希臘文學作品有荷馬的敘事史詩《伊利亞特》和《奧德賽》,著重描寫了和特洛伊戰爭相關的重大事件。基本上和荷馬是同時期的赫西俄德的兩部詩歌《神譜》和《工作與時日》包含了當時的學者對世界起源、神權統治和人類時代的延續以及人類疾苦和祭祀活動的起源的看法和認識。除了《荷馬史詩》之外,還可以從《》(抒情詩,公元前5世紀的悲劇作品)、希臘化時期的學術作品和詩歌以及羅馬帝國時期的作品,如普魯塔克和保薩尼亞斯的作品中發現希臘神話的踪跡。 現在希臘神話已經從很多藝術品上關於眾神和英雄故事的裝飾得到考古學上證明。公元前8世紀的陶器上的幾何設計鮮明地記錄特洛伊圍城的場景和赫拉克勒斯的冒險。在隨後的古風時期、古典希臘時期以及希臘化時期,大量得到了文學上的證據證明神話場景不斷湧現。 希臘神話對西方文化、藝術、文學和語言有著明顯而深遠的影響。從古希臘時期到現代,詩人和藝術家很多都從希臘神話中獲得靈感,並為其賦予現代意義。.

地球和希腊神话 · 希腊神话和月球的起源 · 查看更多 »

微行星

微行星被認為是存在於原行星盤和岩屑盤內的固態物體。 一種被廣為接受的行星形成理論是維克托·薩夫羅諾夫(Viktor Safronov)的微行星假說,說明行星的形成是由微小的塵埃顆粒經由不斷的碰撞和黏合,形成越來越大的個體。當這個個體的直徑達到大約1公里的大小,就可以直接經由相互間的重力吸引,更快地形成月球尺度的原行星,成為龐然大物。這就是微行星如何經常被定義的。比微行星小的物體依賴布朗運動或是氣體中的湍流運動,使彼此間能發生足以導致黏合的碰撞。還有,微行星也可能在原行星盤的盤面中段塵埃顆粒密集成層的區域,因為經歷重力的不穩定而聚集。許多的微行星會因為劇烈的撞擊而破碎,但是一些最大的微行星可能經歷這個階段後仍能存在並繼續增長成為原行星,然後成為行星。 一般相信這個時期大約在38億年前,在經歷了後期重轟炸期的階段之後,大部分在太陽系內的微行星不是完全被拋出太陽系外,就是進入距離異常遙遠的軌道,例如歐特雲,或是被來自類木行星(特別是木星和海王星)規則的重力輕輕的推送而與更大的物體碰撞。少數的微行星可能被捕獲成為衛星,像是火衛一和火衛二,以及類木行星許多高傾角的衛星。 到今天仍然存在的微行星對科學家是非常有價值的,因為它們蘊含了有關我們的太陽系誕生時的訊息。雖然它們的外表的化學組成可能已經被強烈的太陽輻射改變,但內部的成分基本上仍是微行星形成時未被碰觸過的原始物質。這使每個微行星都像“時間膠囊”,它們的結構能告訴我們太陽星雲以及我們的行星系統形成時的條件。 參考隕石和彗星。.

地球和微行星 · 微行星和月球的起源 · 查看更多 »

後期重轟炸期

後期重轟炸期,又名月球災難,又稱晚期重轟炸,是指約於41億年前至38億年前,即於地球地質年代中的冥古宙及太古宙前後,推斷在月球上發生不成比例的大量小行星撞擊的事件,在地球、水星、金星及火星亦同樣發生。這個事件的證據主要是基於在月球取得的樣板的測年結果,大部份隕擊熔岩都是在一段相當短的時間內形成。有很多的假說嘗試解釋進入太陽系內側的小行星或彗星碎片的成因,但卻仍未有共識。其中一個著名的理論是指當時類木行星正進入軌道,引力將在小行星帶或古伯帶的物體拋入同心軌跡並撞向類地行星。雖然如此,有些爭議指這些月球樣板的數據並不一定來自這種災難事件,而測年的結果聚集在同一段時間是因在同一的撞擊盆地取樣所致。.

地球和後期重轟炸期 · 後期重轟炸期和月球的起源 · 查看更多 »

忒亚

忒亚(古希腊语:Θεία,字面意思是“女神”)希腊神话中的一个女提坦。 她的一个别名是欧律法厄萨(ὐρυφάεσσα,字面意思是“放出光辉的”)。 忒亚是第一代的12位提坦神之一,由天神乌剌诺斯和地神该亚所生。赫西俄德称她为“牛眼的”欧律法厄萨。忒亚与其兄弟许珀里翁结合,生下了赫利俄斯(太阳)、塞勒涅(月球)和厄俄斯(曙光)。因此她可被称为是众光明神之母。古希腊大诗人品达直呼忒亚为“太阳之母”。 由于忒亚是月球女神塞勒涅的母亲,天文学上有一种月球成因的灾变说将一颗假设中的天体命名为“忒亚”。根据这个理论,该天体与地球的碰撞产生了月球。.

地球和忒亚 · 忒亚和月球的起源 · 查看更多 »

火星

火星(Mars, 天文符號♂),是離太陽第四近的行星,為太陽系中四顆類地行星之一。西方稱火星為瑪爾斯,是羅馬神話中的戰神;古漢語中則因为它荧荧如火,位置、亮度時常變動讓人無法捉摸而稱之為熒惑。火星在太陽系的八大行星中,第二小的行星,其質量、體積仅比水星略大。火星的直徑約為地球的一半,自轉軸傾角、自轉週期則與地球相當,但繞太陽公轉周期是地球的兩倍。在地球上,火星肉眼可見,亮度可達-2.91,只比金星、月球和太陽暗,但在大部分時間裡比木星暗。 火星大气以二氧化碳为主,既稀薄又寒冷。火星在視覺上呈現為橘紅色是由其地表所廣泛分佈的氧化鐵造成的。火星地表沙丘、砾石遍布且没有稳定的液态水,火星南半球是古老、充满陨石坑的高地,北半球则是较年轻的平原。 火星有兩個天然衛星:火衛一和火衛二,形狀不規則,可能是捕獲的小行星。火星目前有四艘在軌運行的探測船,分別是火星奧德賽號、火星快車號和火星偵察軌道器以及2014年9月22日抵达的MAVEN轨道器,地表還有很多火星車和著陸器,包括兩台火星車:機會號和好奇號,和已經結束任務的精神號和鳳凰號。根據觀測的證據,火星以前可能覆蓋大面積的水。亦觀察到最近十年內類似地下水湧出的現象。 火星全球勘測者則觀察到南極冠有部份退縮。火星快車號和火星偵察軌道器的雷達資料顯示兩極和中緯度地表下存在大量的水冰Water ice in crater at Martian north pole http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html。2008年7月31日,鳳凰號直接於表土之下證實水冰的存在。2013年9月26日,火星探測車好奇號發現火星土壤含有豐富水分,大約為1.5至3重量百分比,顯示火星有足夠的水資源供給未來移民使用。2015年9月證實火星有間歇流動的液態水(液態鹽水)。.

地球和火星 · 月球的起源和火星 · 查看更多 »

纽约时报

纽约时报(The New York Times,缩写作 NYT)是一家美國日報,由紐約時報公司於1851年9月18日在美國紐約創辦和持續出版。和《华尔街日报》的保守派旗舰报纸地位相对应,《纽约时报》是美国親自由派的第一大报。 它最初被称作《纽约每日时报》(The New-York Daily Times),创始人为亨利·J·雷蒙德和。.

地球和纽约时报 · 月球的起源和纽约时报 · 查看更多 »

衛星

衛星,是環繞一顆行星按閉合軌道做周期性運行的天體。如地球的衛星是月球。不過,如果兩個天體的質量相當,它們所形成的系統一般稱為雙行星系統,而不是一顆行星和一顆天然衛星。通常,兩個天体的质量中心都處於行星之內。因此,有天文學家認為冥王星與冥衛一應該歸類為雙行星,但2005年發現兩顆新的冥衛,使問題複雜起來了。.

地球和衛星 · 月球的起源和衛星 · 查看更多 »

阿波罗计划

阿波羅計划(Project Apollo)或作阿波罗工程,港澳地區及臺灣有時稱其為太陽神計划,是美國太空總署从1961年至1972年从事的一系列載人航天任务,於1960年代的10年中,主要致力于完成载人登陸月球和安全返回地球的目标。1969年,阿波罗11号宇宙飞船达成了上述目标,尼尔·阿姆斯特朗成为第一个踏足月球表面的人类。为了进一步执行在月球的科学探测,阿波羅計划一直延续到1970年代早期。总共耗资约240亿美元,因此有人认为,资金是美国能夠领先一步登陸月球的最大因素。 阿波羅計划是美國太空總署执行的迄今为止最庞大的月球探测計划,“阿波羅”飞船的任务包括为载人登月飞行作准备和实现载人登月飞行,已于1972年底结束。迄今(CURRENTYEAR年)40多年來还没有过其他的载人航天器离开过地球轨道。阿波羅計划详细地揭示了月球表面特性、物质化学成份、光学特性并探测了月球重力、磁场、月震等。后来的天空实验室計划和美国、苏联联合的阿波羅-联盟测试計划也使用了原来为阿波羅建造的设备,也就经常被认为是阿波羅計划的一部分。 阿波羅計划取得了巨大的成功,惟計划中也有过几次严重的危机,包括阿波羅1號测试时的大火造成维吉尔·格里森、爱德华·怀特和罗杰·查菲的死亡;阿波羅13號的氧气罐爆炸以及阿波羅-联盟测试計划返回大气层时排放的有毒气体都几乎使执行任务的宇航员丧命。.

地球和阿波罗计划 · 月球的起源和阿波罗计划 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

地球和铁 · 月球的起源和铁 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

地球和氧 · 月球的起源和氧 · 查看更多 »

潮汐加速

潮汐加速是行星與其衛星之間潮汐力的效應。這種“加速”通常都是負面的效應,如果衛星是在順行軌道上運行,會逐漸退行和遠離行星(衛星的角動量增加),相對的,行星的自轉也會減緩(角動量守恆)。這個過程最終會導致質量小的先潮汐鎖定,然後大的也會如此。地月系統是研究這種情況的最佳事件。 衛星軌道週期短於主星(行星)的自轉周期,或是逆行軌道的狀況,稱為潮汐減速,是一種類似的程序(衛星的角動量減少)。.

地球和潮汐加速 · 月球的起源和潮汐加速 · 查看更多 »

潮汐鎖定

潮汐鎖定(或同步自轉、受俘自轉)發生在重力梯度使天體永遠以同一面對著另一個天體;例如,月球永遠以同一面朝向著地球。潮汐鎖定的天體繞自身的軸旋轉一圈要花上繞著同伴公轉一圈相同的時間。這種同步自轉導致一個半球固定不變的朝向夥伴。通常,在給定的任何時間裡,只有衛星會被所環繞的更大天體潮汐鎖定,但是如果兩個天體的物理性質和質量的差異都不大時,各自都會被對方潮汐鎖定,這種情況就像冥王星與凱倫。 這種效應被使用在一些人造衛星的穩定上。.

地球和潮汐鎖定 · 月球的起源和潮汐鎖定 · 查看更多 »

月球

没有描述。

地球和月球 · 月球和月球的起源 · 查看更多 »

上面的列表回答下列问题

地球和月球的起源之间的比较

地球有553个关系,而月球的起源有41个。由于它们的共同之处20,杰卡德指数为3.37% = 20 / (553 + 41)。

参考

本文介绍地球和月球的起源之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »