徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

音障

指数 音障

音障(Sound barrier),是一種物理現象。當物體(通常是航空器)的速度接近音速時,將會逐漸追上自己發出的聲波。此时,由于机身对空气的压缩无法迅速传播,将逐渐在飞机的迎风面及其附近区域积累,最终形成空气中压强、温度、速度、密度等物理性质的一个突变面——激波(Shock Wave,又译冲击波、骇波或--)面。激波的形成是超音速飞行的典型特征。激波面将增加空气对飛行器的阻力,這種因為音速造成提升速度的障礙被俗稱為音障。另外,在早期飞机的设计中,由于对跨音速空气动力学了解尚少,所以曾多次发生飞机试图超越音速时解体或者失控坠毁的严重事故,有人把这一时期困扰飞机制造业的难题也称为“音障”。。 飞行器進入超音速飞行形成的激波面,是声学能量的高度集中面,所以又称音錐。音锥在听觉上是一声短暂而极其强烈(可能超越人耳听力上限的)的爆炸声,故稱為「音爆」或「聲爆」。強烈的音爆不僅會對地面建築物產生損害,也会给飛行器本身跨越衝擊面的部分造成巨大的压力,所以各国一般都禁止超音速飞机在住宅区上空突破音速。 除此之外,跨音速飞行常常伴随的一个效应称为普朗特-格劳厄脱凝结云(Prandtl-Glauert condensation clouds),其特徵是一個以飞机為中心軸、从机翼前段开始向四周均勻擴散的圓錐狀雲團。这是由於机翼引起气流加速,空气内能转化为动能,导致温度的降低,進而引起水气凝结导致。水气凝結變成微小的水珠後,肉眼看來就像是雲霧般的狀態。這個高速区會隨著離機身的距離增加而迅速消失。值得一提的是,普朗特-格劳厄脱凝结云并非只能在跨音速飞行中看到,与激波也没有必然的联系,它仅仅表徵了空气具有一定的可压缩性。在合适的条件下,尚未接近音速的飞机也能在自己周围产生普朗特-格劳厄脱凝结云。.

17 关系: 压强声学声爆密度空气空气动力学物理学音速飞行器超音速跨音速能量速度温度激波机翼普朗特-格勞爾奇點

压强

生在兩個物體接觸表面、垂直於該表面的作用力,亦可稱為壓力。通常來說,在液壓、氣動或大氣層等領域中提到的「壓力」指的實際上是壓强,即在数值上等於接觸表面上每單位面積所受壓力。 壓強是分布在特定作用面上之力與該面積的比值。換句話說,是作用在與物體表面垂直方向上的每單位面積的力的大小。計式壓強是相較於該地之大氣壓的壓強。雖然壓強可用任意之力單位與面積單位進行測量,但是壓強的國際標準單位(每單位平方公尺的牛頓)也被稱作帕斯卡。 一般以英文字母「p」表示。压力與力和--積的關係如下: 其中.

新!!: 音障和压强 · 查看更多 »

声学

声学是研究媒质中机械波(包括声波、超声波和次声波)的科学,研究范围包括声波的产生,接收,转换和声波的各种效应。同时声学测量技术是一种重要的测量技术,有着广泛的应用。.

新!!: 音障和声学 · 查看更多 »

声爆

聲爆(或音爆,英文:Sonic boom)是在空氣中運動的物體速度突破音障時,產生衝擊波而伴生的巨大響聲。音爆的声音能量巨大,听起来像爆炸一样。超音速的子弹飞过头顶,或者挥动,都会产生较大的噼啪声,这些都是微型的音爆。 通常聲爆是由超音速戰鬥機或其他超音速飛行器,如-zh-hk:協和飛機;zh-tw:協和式客機;zh-cn:协和飞机;-進行跨音速飛行時造成的,而另外槍械射擊時所產生的爆音亦同樣是一種聲爆。飛機在以較低速度飛行時產生的聲音是向各個方向傳播的。由於飛機的快速運動,飛機頭部發出的聲波受到擠壓,而飛機尾部發出的聲波則被擴散,集中在一個錐形範圍之中。 當飛機以音速飛行時,飛行的速度比它發出的聲波的速度更快。觀察快速行駛的汽艇可以發現,汽艇的速度比它形成的水波快,以致於水波不是在汽艇的周圍以圓圈形式傳播,而是排成三角形,三角形的頂尖正好與汽艇的頭部相重合。對於音速飛行的飛機,由於聲波是向各個方向傳播的,形成的就不是三角形,而是圓錐形,錐體的頂尖位於機身上。在這個錐體中,飛機的聲波被壓縮成單個脈衝,這個錐體被飛機「拖著」,並向四周擴散,直至飛機過去後,聲音才到達我們的耳朵,於是我們突然感到一個衝力,這就是聲爆現象。.

新!!: 音障和声爆 · 查看更多 »

密度

3 | symbols.

新!!: 音障和密度 · 查看更多 »

空气

气是指地球大气层中的气体混合。它主要由78%的氮气、21%氧气、还有1%的稀有气体和杂质组成的混合物。空气的成分不是固定的,随着高度的改变、气压的改变,空气的组成比例也会改变。但是长期以来人们一直认为空气是一种单一的物质,直到后来法国科学家拉瓦锡通过实验首先得出了空气是由氧气和氮气组成的结论。19世纪末,科学家们又通过大量的实验发现,空气裡还有氦、氩、氙、氖等稀有气体。 在自然状态下空气是无味无臭的。 空气中的氧气对于所有需氧生物来说是必需。所有动物都需要呼吸氧气,植物利用空气中的二氧化碳进行光合作用,二氧化碳是近乎所有植物的唯一的碳的来源。.

新!!: 音障和空气 · 查看更多 »

空气动力学

氣動力學 (Aerodynamics),是流體力學的一個分支,主要研究物體在空氣或其它氣體中運動時所產生的各種力。.

新!!: 音障和空气动力学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 音障和物理学 · 查看更多 »

音速

声速,又称“音速”(每秒340 米,每小時1236公里),顧名思義即是聲音的速度,定義為單位時間內振動波傳遞的距離。音速(波傳遞的速度)與傳遞介質的材質狀況(密度、溫度、壓力…)有絕對關係,而與發聲者(波源)本身的速度無關,而發聲者(波源)與聽者(觀察者)間若有相對運動關係,就形成了都卜勒效應;由此觀點,我們可以知道,超音速時的諸多物理現象(震波、音爆、音...),其實與聲音無關,而是壓縮波密集累積所產生的物理現象。聲音的傳播速度在固體最快,其次液體,而氣體的音速最慢。通常音速是指在空氣中的音速,为343.2米/秒(1,236公里/小时)。音速又會依空氣之狀態(如濕度、温度、密度)不同而有不同數值。如攝氏零度之海平面音速约为331.5米/秒(1193公里/小時);一萬米高空之音速約為295米/秒(1062公里/小時);另外每升高1攝氏度,音速就增加0.607米/秒。 在固體中有兩種可能的聲波,其中一種是與流體相同的縱波,另一種是流體沒有的橫波,兩種不同的聲波可以有不同的傳播速度(例如地震波)。縱波形式的音速取決於介質的壓縮率和密度,而固體中橫波形式的音速取決於介質的剛度和密度。 在超流體中也存在兩種不同的「聲波」,第一種聲波是與平常流體相同的密度波,另一種是超流體特有的第二聲波。.

新!!: 音障和音速 · 查看更多 »

飞行器

飞行器指能在地球大气层内、外飞行的器械,包括航空器(如飞机)、航天器(如:太空穿梭機)、火箭和导弹等。.

新!!: 音障和飞行器 · 查看更多 »

超音速

超音速()簡單說,是指超過環境中音速的速度。在海平面高度,氣溫攝氏空氣中,音速大約是343米/秒(約等於1,125呎/秒、768英里/小時或1,235千米/小時),換算驗證,如。 音速,基本單位定義為1馬赫(Mach),因此,超音速常以音速倍數——馬赫數為量度單位。超過5馬赫的速度有時候稱為超高音速()。物體--有一些部份(例如轉子葉片的末梢)其周遭空氣是超過音速的情形稱為穿音速();出現這種情況,常見的物體速度值是介於0.8馬赫與1.2馬赫之間。單位換算,如。 聲音是在彈性介質中行進的振動(壓力波)。在氣體中,聲波是一種縱波,以不同速度行進,其中最相關的影響因素是氣體的分子量與溫度(氣體壓力影響較小)。既然氣體溫度與組成隨著海拔改變甚鉅,飛行器的馬赫數可以在空速未有改變下有所變動。在室溫的水中,速度超過可被視為超音速。在固體中,聲波可以是縱波或橫波,而且傳播速度更快。.

新!!: 音障和超音速 · 查看更多 »

跨音速

跨音速(Transonic),或稱--,是一個空氣動力學名詞,指的是一個正好在音速上下的速度範圍(約0.8–1.2馬赫)。其定義為臨界馬赫數(通常是0.8馬赫附近)與一個更高速度(通常是1.2馬赫)之間的速度範圍,在這之間的速度範圍,氣流有些是超音速,也有些是亞音速。當飛行器速度超過臨界馬赫數,此時飛行器周遭的空氣流開始有部分是超音速流,空氣力學上開始出現急遽的變化,例如震波的出現;而當飛行器速度達1.2馬赫時,此時所有氣流皆為超音速,周遭氣流變得穩定。 多數現代噴射飛機以可觀的時間處在跨音速飛行。因為一個常出現在這樣速度範圍,稱為波阻(wave drag)的效應而使這樣的飛行狀態顯得重要。試圖抵抗波阻效應的變革可在所有高速飛行器上見到;最顯著的是後掠翼(swept wing)的設計,但另一個常見的形式是黃蜂腰形的機身(wasp-waist fuselage,亦稱可樂瓶機身),作為Whitcomb面積律的副產品。.

新!!: 音障和跨音速 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 音障和能量 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

新!!: 音障和速度 · 查看更多 »

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

新!!: 音障和温度 · 查看更多 »

激波

震波(Shock Wave),又譯衝擊波、駭波或激波,属于紊流的一种传播形式。如同其他通常形式下的波动,激波也可以通过介质传输能量。在某些不存在物理介质的特殊情况下,激波可以通过场,如电磁场来传输能量。激波的主要特点表现为介质特性(如压力、温度、或速度)在激波前后发生了一个像正的阶梯函数般的突然变化。与此相应的负的阶跃则为膨胀波。声学激波其速度一般高于通常波速(在空气中即音速)。 激波随距离的增加耗散很快,與孤波(另一种形式的非线性波)不同。而且,膨胀波总是伴随着激波,并最终与激波合并。这部分抵消了激波的影响。声爆,一种超音速飞机通过时产生的声学现象,即是由激波——膨胀波对的耗散和湮灭所产生的。.

新!!: 音障和激波 · 查看更多 »

机翼

机翼是为固定翼航空器(包括飞机和滑翔机)提供升力的主要部件,模仿鳥類的翅膀,維持其在空中的穩定飛行以及提供必要的操纵力。机翼上通常安装有固定翼航空器的主操纵面-副翼,以及辅助操纵装置襟翼。.

新!!: 音障和机翼 · 查看更多 »

普朗特-格勞爾奇點

普朗特-格勞爾奇點(Prandtl–Glauert singularity, P.G. singularity)現象有時被稱為錐狀雲、衝擊領或衝擊鞘, by Robert Roy Britt, LiveScience.com, June 30, 2009。 當航空器以突破音速的高速巡航時,前端會短暫出現錐形的冷凝雲。一般認為氣壓突然下降是造成這種現象的主因,但由於機制未完全明朗,因此這種現象是空氣動力學上的一個奇點。 太空梭發射25秒至33秒之後,速度超過音速,即可見冷凝雲出現在前緣。一些核子試爆的檔案影片也記錄了這種效應,1946年美國十字路行動進行水下試爆,核爆所產生的衝擊波前端形成了短暫的冷凝霧雲。這種雲被稱為「威爾遜雲」,因為看起來與威爾遜雲室中的現象類似。現代超高旁通比噴射引擎的扇葉,在起飛全速運轉時也可見這種效應。 高速衝擊之下的空氣可被視為是處於絕熱過程之下的,因此壓力變化會引發空氣溫度的改變。在潮濕的空氣裡,衝擊波中空氣最稀薄的部分(貼近航空器的區域)溫度會降至露點以下,使得空氣中的水份快速凝結,形成可見的霧錐。壓力的改變離航空器越遠越小,因此凝結現象只會出現在航空器的前端周遭,並呈錐狀。.

新!!: 音障和普朗特-格勞爾奇點 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »