徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

电感

指数 电感

電感(Inductance)是閉合迴路的一種屬性,即當通過閉合迴路的電流改變時,會出現電動勢來抵抗電流的改變。如果這種現象出現在自身迴路中,那麼這種電感稱為自感(self-inductance),是閉合迴路自己本身的屬性。假設一個閉合迴路的電流改變,由於感應作用在另外一個閉合迴路中產生電動勢,這種電感稱為互感(mutual inductance)。電感以方程式表達為 其中,\mathcal是電動勢,L是電感,i是電流,t是時間。 術語「電感」是1886年由奥利弗·赫维赛德命名。通常自感是以字母「L」標記,這可能是為了紀念物理學家海因里希·楞次的貢獻。互感是以字母「M」標記,是其英文(Mutual Inductance)的第一個字母。採用國際單位制,電感的單位是亨利(henry),標記為「H」,是因美國科學家約瑟·亨利命名。1 H.

38 关系: 基爾霍夫電路定律变压器发散级数奧利弗·黑維塞安培對稱矩陣交流電国际单位制磁場磁矢势磁路約瑟·亨利線性關係真空磁导率电路电能电阻电流电感电感元件直流電螺線管頻率馬克士威方程組點規定載流迴路能量電壓電子元件電動勢集膚效應RLC电路漏電感海因里希·楞次斯托克斯公式拉普拉斯方程

功(work),也叫机械功,是物理学中表示力对位移的累积的物理量,指从一种物理系统到另一种物理系统的能量转变,尤其是指通过使物体朝向力的方向移动的力的作用下能量的转移。与机械能相似的是,功也是标量,国际单位制单位为焦耳。 “功”一词最初是法国数学家贾斯帕-古斯塔夫·科里奥利创造的。 由动能定理,若一个外力作用于一物体使之动能从Ek0增至Ek,那么,此力所作的机械功为: 其中m是物体的质量,v是物体的速度。 机械功就是力与位移的內積: 若力与位移的夹角小于直角,则机械功为正,亦称为力作正功。若力与位移的夹角大于直角,则机械功为负,或力作负功,或物体克服力作功。 若力的方向与位移方向垂直,则此力不作功: 舉例來說:一個10牛頓(F.

新!!: 电感和功 · 查看更多 »

基爾霍夫電路定律

基爾霍夫電路定律(Kirchhoff Circuit Laws)簡稱為基爾霍夫定律,指的是兩條電路學定律,基爾霍夫電流定律與基爾霍夫電壓定律。它們涉及了電荷的守恆及電勢的保守性。1845年,古斯塔夫·基爾霍夫首先提出基爾霍夫電路定律。現在,這定律被廣泛地應用於電機工程學。 從馬克士威方程組可以推導出基爾霍夫電路定律。但是,基爾霍夫並不是依循這條思路發展,而是從格奧爾格·歐姆的工作成果加以推廣得之。.

新!!: 电感和基爾霍夫電路定律 · 查看更多 »

变压器

變壓器(Transformator;Transformer)是應用法拉第電磁感應定律而升高或降低電壓的裝置。變壓器通常包含兩組或以上的線圈。主要用途是升降交流電的電壓、改變阻抗及分隔電路。電路符號常用T當作編號的開頭。例:T01、T201等.

新!!: 电感和变压器 · 查看更多 »

发散级数

发散级数(Divergent Series)指(按柯西意义下)不收敛的级数。如级数1 + 2 + 3 + 4 + \cdots和1 - 1 + 1 - 1 + \cdots ,也就是说该级数的部分和序列没有一个有穷极限。 如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数 调和级数的发散性被中世纪数学家奥里斯姆所证明。.

新!!: 电感和发散级数 · 查看更多 »

奧利弗·黑維塞

奧利弗·黑維塞(Oliver Heaviside,),英國自學成才的物理學家和电子工程师。他没有接受过正规的高等教育,作风古怪,不太重视严格的数学论证,善以直觉进行论述和演算,在数学和工程上做出了众多原创性成就。他通过数年时间自学微积分和麦克斯韦的《》,创立向量分析学,并将电磁学中最著名的麦克斯韦方程组改写为今天人们所熟知的形式。.

新!!: 电感和奧利弗·黑維塞 · 查看更多 »

安培

安培,简称安,是国际单位制中电流强度的单位,符号是A。同时它也是国际单位制中七个基本单位之一另外六个是米、开尔文、秒、摩尔、坎德拉和千克。安培是以法国数学家和物理学家安德烈-马里·安培命名的,为了纪念他在经典电磁学方面的贡献。 实际情况中,安培是对单位时间内通过导体横截面的电荷量的度量。1秒内通过横截面的电量为1库仑(个电子的电量)时,电流大小為1安培。 比安培小的電流可以用毫安、微安等單位表示。.

新!!: 电感和安培 · 查看更多 »

對稱矩陣

在線性代數中,對稱矩陣是一個方形矩陣,其轉置矩陣和自身相等。 對稱矩陣中的右上至左下方向元素以主對角線(左上至右下)為軸進行對稱。若將其寫作A.

新!!: 电感和對稱矩陣 · 查看更多 »

交流電

交流電流(Alternating Current,縮寫:AC)是指大小和方向都發生週期性變化的電流,在一個週期內的運行平均值為零。不同於直流電,後者的方向是不會隨著時間發生改變的,並且直流電沒有周期性變化。 通常波形為正弦曲線。交流電可以有效傳輸電力。但實際上還有應用其他的波形,例如三角形波、正方形波。生活中使用的市電就是具有正弦波形的交流電。.

新!!: 电感和交流電 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 电感和国际单位制 · 查看更多 »

磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.

新!!: 电感和磁 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 电感和磁場 · 查看更多 »

磁矢势

磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.

新!!: 电感和磁矢势 · 查看更多 »

磁路

磁路是一个包含磁通量的闭合回路。它一般含有磁的成分,例如永久磁铁、铁磁性材料,以及电磁铁,但也可能含有空气间隙和其它的物质。磁路被用于许多设备以有效地引导磁场,如电动机,发电机,变压器,继电器,起重电磁铁,超导量子干涉仪,检流计,和磁性。.

新!!: 电感和磁路 · 查看更多 »

約瑟·亨利

約瑟·亨利(英語:Joseph Henry,)是一位美國科學家,是的創始成員之一,也是史密森尼學會首任會長。他被認為是班傑明·富蘭克林之後最偉大的美國科學家之一,對於電磁學貢獻頗大。他於1830年的獨立研究中發現法拉第電磁感應定律,比法拉第早發現這一定律,但其並未公開此發現。 亨利在1831年發明電子門鈴(特別是可以使用電線長距離來敲響門鈴),然後於1835年發明電子繼電器。電感的國際單位制導出單位亨利就是以約瑟·亨利來命名的。.

新!!: 电感和約瑟·亨利 · 查看更多 »

線性關係

在现代学术界中,線性關係一詞存在2种不同的含义。其一,若某數學函數或数量关系的函数图形呈現為一條直線或線段,那么这种关系就是一种線性的關係。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。.

新!!: 电感和線性關係 · 查看更多 »

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

新!!: 电感和真空磁导率 · 查看更多 »

电路

电路(Electrical circuit)或稱电子迴路,是由电气设备和--, 按一定方式連接起来,为电荷流通提供了路径的总体,也叫电子线路或稱電氣迴路,簡稱网络或迴路。如電源、电阻、电容、电感、二极管、三极管、電晶體、集成電路和电键等,构成的网络、硬體。负电荷可以在其中运动。.

新!!: 电感和电路 · 查看更多 »

电能

电能(Electrical energy),是指电以各种形式做功(即產生能量)的能力。电能被广泛应用在动力、照明、冶金、化学、纺织、通信、广播等各个领域,是科学技术发展、国民经济飞跃的主要动力。.

新!!: 电感和电能 · 查看更多 »

电阻

在電磁學裏,電阻是一個物體對於電流通過的阻礙能力,以方程式定義為 其中,R為電阻,V為物體兩端的電壓,I為通過物體的電流。 假設這物體具有均勻截面面積,則其電阻與電阻率、長度成正比,與截面面積成反比。 採用國際單位制,電阻的單位為歐姆(Ω,Ohm)。電阻的倒數為電導,單位為西門子(S)。 假設溫度不變,則很多種物質會遵守歐姆定律,即這些物質所組成的物體,其電阻為常數,不跟電流或電壓有關。稱這些物質為「歐姆物質」;不遵守歐姆定律的物質為「非歐姆物質」。 電路符號常常用R來表示,例: R1、R02、R100等。.

新!!: 电感和电阻 · 查看更多 »

电流

電流(courant électrique; elektrischer Strom; electric current)是电荷的平均定向移动。电流的大小称为电流强度,是指单位时间内通过导线某一截面的电荷,每秒通过1库仑的電荷量稱为1安培。安培是國際單位制七個基本單位之一。安培計是專門測量電流的儀器 。 有很多種承載電荷的載子,例如,導電體內可移動的電子、電解液內的離子、電漿內的電子和離子、強子內的夸克。這些載子的移動,形成了電流。 有一些效應和電流有關,例如電流的熱效應,根據安培定律,電流也會產生磁場,馬達、電感和發電機都和此效應有關。.

新!!: 电感和电流 · 查看更多 »

电感

電感(Inductance)是閉合迴路的一種屬性,即當通過閉合迴路的電流改變時,會出現電動勢來抵抗電流的改變。如果這種現象出現在自身迴路中,那麼這種電感稱為自感(self-inductance),是閉合迴路自己本身的屬性。假設一個閉合迴路的電流改變,由於感應作用在另外一個閉合迴路中產生電動勢,這種電感稱為互感(mutual inductance)。電感以方程式表達為 其中,\mathcal是電動勢,L是電感,i是電流,t是時間。 術語「電感」是1886年由奥利弗·赫维赛德命名。通常自感是以字母「L」標記,這可能是為了紀念物理學家海因里希·楞次的貢獻。互感是以字母「M」標記,是其英文(Mutual Inductance)的第一個字母。採用國際單位制,電感的單位是亨利(henry),標記為「H」,是因美國科學家約瑟·亨利命名。1 H.

新!!: 电感和电感 · 查看更多 »

电感元件

電感器(inductor)是一種電路元件,會因為通過的電流的改變而產生電動勢,從而抵抗電流的改變。這屬性稱為電感。 电感元件有许多种形式,依據外觀與功用的不同,而會有不同的稱呼。以漆包線繞製多圈狀,常作为电磁铁使用和变压器等中使用的电感也依外觀称為线圈(coil)。用以對高頻提供較大電阻,通過直流或低頻的,依功用常稱為扼流圈(choke),又稱抗流圈。常配合铁磁性材料,安装在变压器、电动机和发电机中使用的較大电感,也称绕组(Winding)。導線穿越磁性物質,而無線圈狀,常充当高頻滤波作用的小电感,依外觀常称為磁珠(Bead)。 電感器一詞,通常只用來稱呼以自感或其效應為主要工作情況的元件。非以自感為主的,習慣上大多稱呼它的其他名稱,平常不以電感器稱呼,例如:變壓器、馬達裡的電磁線圈繞組等。 在中文裡,電感器一詞在口語上也會被簡稱為電感,但如需嚴謹表達為實體物件的情況,仍宜稱為電感器。.

新!!: 电感和电感元件 · 查看更多 »

直流電

流电流(Direct current),可通过使用称为整流器的电子元件(通常情况下)或机电元件(在历史上),使交流电流只向一个方向流动,将其转化为直流电流。直流电流由成交流电流的逆变器或电动发电机组。 第一个商业化的电力传输由托马斯·爱迪生在十九世纪后期开发,使用110伏特的直流电。然而由于在传输和电压转换的优势差异,今天几乎所有的电力分配為交流电。在20世纪50年代中期,曾經發展過超高壓直流電系統,現在該技術是在遠程及水下電力傳輸上,除了高壓交流電以外的另一種選項然而並不常見。但是特種應用要求上,如一些第三軌或架空電車線的铁路电力系统還是用直流電,交流电被分配到一个变电站利用一个整流器转换为直流电。 而末端應用上卻是直流電的天下,尤其是在技术发展的地带(如加州的硅谷等),目前幾乎所有充電器都使用直流电对电池进行充电,且在几乎所有电子科技系统中作为电源。非常大量的直流电源還用于生产铝和其它电化学过程。直流還用在一些铁路推进,尤其是在城市地区的捷運,並且隨著捷運路線順便建立了一個直接輸出高压直流電的電網,供給有限的沿路工商業應用是常見做法。.

新!!: 电感和直流電 · 查看更多 »

螺線管

螺線管(英文:solenoid)是個三維線圈。在物理學裏,術語螺線管指的是多重捲繞的導線,捲繞內部可以是空心的,或者有一個金屬芯。當有電流通過導線時,螺線管內部會產生均勻磁場。螺線管是很重要的元件.。很多物理實驗的正確操作需要有均勻磁場。螺線管也可以用為電磁鐵或電感器。 在工程學裏,螺線管也指為一些轉換器(transducer),將能量轉換為直線運動。电磁阀(solenoid valve)是一種綜合原件,內中最重要的組件是機電螺線管。機電螺線管是一種機電原件,可以用來操作氣控閥或液壓閥。螺線管開關是一種繼電器,使用機電螺線管來操作電開關。例如,汽車的起動器螺線管是一種機電螺線管。.

新!!: 电感和螺線管 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

新!!: 电感和頻率 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 电感和馬克士威方程組 · 查看更多 »

點規定

在電路分析裏,點規定(dot convention)專門設定兩個耦合線圈的互感電壓的正負極性。點規定假設互感 M 永遠是正值。在使用點規定前,必須先在每一個線圈的某一端標註圓點,稱為「圓點端」,另一端則不標註任何符號。點規定表明:.

新!!: 电感和點規定 · 查看更多 »

載流迴路

在電磁學裏,載流迴路(current carrying loop)定義為載有電流的「閉合迴路」(closed loop)。載流迴路是一種理論元件,並沒有設定這迴路的材料為甚麼,也沒有設定迴路的物理性質。所以術語「載流迴路」給出的資訊是.

新!!: 电感和載流迴路 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 电感和能量 · 查看更多 »

電壓

電壓(Voltage,electric tension或 electric pressure),也稱作電位差(electrical potential difference),是衡量单位电荷在静电场中由于電勢不同所產生的能量差的物理量。此概念與水位高低所造成的「水壓」相似。需要指出的是,“电压”一词一般只用于电路当中,“電動勢”和“电位差”则普遍应用于一切电现象当中。 電壓的國際單位是伏特(V)。1伏特等於對每1庫侖的電荷做了1焦耳的功,即U(V).

新!!: 电感和電壓 · 查看更多 »

電子元件

電子元件(electronic component),是電子電路中的基本元素,通常是個別封裝,並具有兩個或以上的引線或金屬接點。電子元件須相互連接以構成一個具有特定功能的電子電路,例如:放大器、無線電接收機、振盪器等,連接電子元件常見的方式之一是焊接到印刷電路板上。電子元件也許是單獨的封裝(電阻器、電容器、電感器、晶體管、二極管等),或是各種不同複雜度的群組,例如:集成电路(運算放大器、排阻、邏輯閘等)。.

新!!: 电感和電子元件 · 查看更多 »

電動勢

在電路學裏,電動勢(electromotive force,縮寫為emf)表徵一些電路元件供應電能的特性。這些電路元件稱為「電動勢源」。電化電池、太陽能電池、燃料電池、熱電裝置、發電機等等,都是電動勢源。電動勢源所供應的能量每單位電荷是其電動勢 。假設,電荷 Q\, 移動經過一個電動勢源後,獲得了能量 W\, ,則此元件的電動勢定义為 \mathcal.

新!!: 电感和電動勢 · 查看更多 »

集膚效應

集膚效應(又称趋肤效应或直譯作表皮效應,英语:Skin effect)是指导体中有交流电或者交变电磁场时,导体内部的电流分布不均匀的一种现象。随着与导体表面的距离逐渐增加,导体内的电流密度呈指数递减,即导体内的电流会集中在导体的表面。从与电流方向垂直的横切面来看,导体的中心部分几乎没有电流流过,只在导体边缘的部分会有电流。简单而言就是电流集中在导体的“皮肤”部分,所以称为集膚效應。产生这种效应的原因主要是变化的电磁场在导体内部产生了涡旋电场,与原来的电流相抵消。.

新!!: 电感和集膚效應 · 查看更多 »

RLC电路

RLC电路是一种由电阻(R)、电感(L)、电容(C)组成的电路结构。LC电路是其简单的例子。RLC电路也被称为二阶电路,电路中的电压或者电流是一個二阶微分方程的解,而其係數是由电路结构决定。 若电路元件都视为线性元件时,一个RLC电路可以被视作电子谐波振荡器。 这种电路的固有频率一般表示为:(单位:赫兹Hz) f_c.

新!!: 电感和RLC电路 · 查看更多 »

漏電感

漏電感,或漏感(Leakage inductance)源于不完全耦合的變壓器,是變壓器中初級線圈與次級線圈的耦合係數小於1,變壓器部分線圈不會有變壓作用,只有類似抑流電感的作用,這部份線圈的電感即為漏電感。 若初級線圈與次級線圈完全耦合(耦合係數k.

新!!: 电感和漏電感 · 查看更多 »

海因里希·楞次

海因里希·楞次(Эмилий Христианович Ленц,转写:Heinrich Lenz,),波羅的海德國人裔的俄国物理学家、地球物理学家。 楞次1804年出生于被俄国占領的爱沙尼亚德尔帕特市(今爱沙尼亚共和国的塔尔图),16岁时以优异的成绩考入德尔帕特大学。1828年,楞次当选俄国圣彼得堡科学院的初级科学助理,1830年当选为圣彼得堡科学院通讯院士,1834年成为院士。1836年到1865年任圣彼得堡大学教授,1840年担任圣彼得堡大学数学物理系系主任,1863年当选为第一任校长。楞次1865年在意大利罗马因中风逝世。 楞次总结了安培的电动力学与法拉第的电磁感应现象后,于1833年在圣彼得堡科学院宣读了题为“关于用电动力学方法决定感生电流方向”的论文,提出了感生电动势阻止产生电磁感应的磁铁或线圈的运动,后来这条定律被称为楞次定律,在1834年的《物理学和化学年鉴》上发表。随后德国物理学家亥姆霍兹证明楞次定律实际上是电磁现象的能量守恒定律。 1842年,楞次独立于英国物理学家焦耳确定了电流与其所产生的热量的关系,也就是焦耳定律,因此焦耳定律也被称为焦耳-楞次定律。楞次还研究了不同金属的电阻率,以及电阻率与温度的关系。 除此之外,在楞次的倡导与协助下,1845年成立了俄国地理学会。.

新!!: 电感和海因里希·楞次 · 查看更多 »

斯托克斯公式

#重定向 斯托克斯定理.

新!!: 电感和斯托克斯公式 · 查看更多 »

拉普拉斯方程

拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家皮埃尔-西蒙·拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学、熱力學和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电場、引力場和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。.

新!!: 电感和拉普拉斯方程 · 查看更多 »

重定向到这里:

互感自感電感

传出传入
嘿!我们在Facebook上吧! »