徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

量子霍尔效应

指数 量子霍尔效应

量子霍尔效应,是霍爾效應的量子力學版本。一般看作是整数量子霍尔效应和分数量子霍尔效应的统称。 整数量子霍尔效应由马普所的德国物理学家冯·克利青发现。他因此获得1985年诺贝尔物理学奖。 分数量子霍尔效应由崔琦、霍斯特·施特默和发现,前两者因此与羅伯特·勞夫林分享1998年诺贝尔物理学奖。 整数量子霍尔效应最初在高磁场下的二维电子氣體中观测到;分数量子霍尔效应通常在迁移率更高的二维电子气下才能观测到。2004年,英國曼徹斯特大學物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功在實驗中從石墨分離出石墨烯,在室溫下觀察到量子霍爾效應。.

23 关系: 史丹佛大學安德烈·海姆崔琦中国科学院中科院物理所张首晟弹道输运凝聚态物理学克劳斯·冯·克利青石墨石墨烯石溪大学科学 (期刊)羅伯特·勞夫林电子马普所诺贝尔物理学奖霍尔效应传感器霍爾效應霍斯特·施特默薛其坤量子力学朗道量子化

史丹佛大學

小利蘭·史丹福大學(Leland Stanford Junior University),常直接稱為史丹福大學(Stanford University),為一所坐落於美國加利福尼亞州史丹福的私立研究型大學,因其學術聲譽和创业氛围而獲評為世界上最知名的高等學府之一。 斯坦福大學於1891年由時任加州參議員及州長的鐵路大亨利蘭·史丹福和他的妻子創辦。這是為了紀念他們因傷寒而於16歲生日前夕去世的兒子()。其為男女及宗教自由的學校,在1930年代前所有學費全免。可是,1893年利蘭·史丹福的逝世及1906年對校園造成重大損毀的三藩市大地震,為該校帶來嚴重的財政困難後才開始收費。二次世界大戰後,時任學校教務長的弗雷德里克·特曼全力支持校友與教職員的企業精神,希望能建立一個自給自足的本地工業,這也是現今硅谷的源流。自上世紀七十年代,史丹福成為了美國SLAC國家加速器實驗室的所在地,及其中一個高等研究計劃署網路(互聯網雛形)的起源地。 學校的校園位於矽谷的西北方,鄰近帕羅奧圖。校方的各個學術部門被歸入七所學術學院內,而包括生物保育區及加速實驗室在內的其他資產則設於主校區之外。此校同時為最富有的教育機構之一,並為第一所在一年內獲得超過十億美元捐款升幅的大學。 史丹福為一所擁有高住宿率及高選擇性的大學,當中的研究生課程較本科的多元化。該校也是馬丁路德金手寫原稿的保存地。史丹福學生透過36支代表隊參與不同的體育競賽,其為兩所太平洋十二校聯盟的私立大學之一。有關校隊曾奪得過104次大學體育協會賽事的冠軍,成績於眾多大學中位列第二。自1994-95年起,其亦一直為全國大學體育競技董事杯的年度得主。 史丹福培養了不少著名人士。其校友涵蓋30名富豪企業家及17名太空員,亦為培養最多美國國會成員的院校之一。史丹福校友創辦了眾多著名的公司機構,如:谷歌、雅虎、惠普、耐克、昇陽電腦等,這些企業的資金合計相等於全球第十大經濟體系。共81名諾貝爾獎得主現或曾於該校學習或工作。.

新!!: 量子霍尔效应和史丹佛大學 · 查看更多 »

安德烈·海姆

安德烈·海姆,FRS(Андрей Константинович Гейм,Sir Andre Konstantin Geim,),俄罗斯裔荷兰藉与英国藉的物理学家,因为「在二维石墨烯材料的開創性實驗」而与其学生康斯坦丁·诺沃肖洛夫一同获2010年诺贝尔物理学奖。,並於2013年獲得科普利獎章。他是主任、曼彻斯特大学Langworthy研究教授、皇家学会2010周年研究教授。.

新!!: 量子霍尔效应和安德烈·海姆 · 查看更多 »

崔琦

崔琦(),生於中國河南省寶豐縣,美籍华人物理学家,1998年诺贝尔物理学奖获得者。.

新!!: 量子霍尔效应和崔琦 · 查看更多 »

中国科学院

中国科学院,简称中科院,於1949年11月在北京成立,是中华人民共和国科学技术方面的最高学术机构,全国自然科学与高新技术综合研究发展中心。1977年5月,哲学社会科学学部独立為中国社会科学院,1994年,在技術科學部的基礎上及國家科委的支持下,成立中国工程院。中国科学院与中国工程院并称“两院”。.

新!!: 量子霍尔效应和中国科学院 · 查看更多 »

中科院物理所

#重定向 中国科学院物理研究所.

新!!: 量子霍尔效应和中科院物理所 · 查看更多 »

张首晟

张首晟(Shou-Cheng Zhang,),美籍華裔物理学家,美國文理科學院院士、美国国家科学院院士、中国科学院外籍院士。現任斯坦福大学J.G. Jackson和C.J. Wood讲座教授。 主要贡献包括对拓扑绝缘体、量子自旋霍尔效应、自旋电子学、高温超导等领域的研究。.

新!!: 量子霍尔效应和张首晟 · 查看更多 »

弹道输运

弹道输运(Ballistic transport),是指介质中的电子在输运过程中几乎不会遇到散射。由于没有散射的作用,电子的运动仅遵从牛顿定律。 介质中的电阻一般是由电子散射而产生,这可以是因为杂质、缺陷或者在平衡位置附近震荡的原子/分子引起的散射;也可以是由在气体和液体中自由运动的原子/分子引起的。 在介质中,我们可以定义一个自由程的概念,表示电子可以自由运动的路程。也就是说,在电子与其它物质发生碰撞,然后背离它初始运动方向之前它运动的路程。在很多情况下,我们可以通过减少杂质或者降低温度(当然,这个对半导体行不通)的办法来提高电子的自由程。 当电子的自由程(远)大于介质的尺度时,我们称此为弹道输运,这种情况下,电子只有碰到了边界才会改变运动方向。 分类:固体物理学.

新!!: 量子霍尔效应和弹道输运 · 查看更多 »

凝聚态物理学

凝聚态物理学專門研究物质凝聚相的物理性质。该领域的研究者力图通过物理学定律来解释凝聚相物质的行为。其中,量子力学、电磁学以及统计力学的相关定律对于该领域尤为重要。 固相以及液相是人们最为熟悉的凝聚相。除了这两种相之外,凝聚相还包括一些特定的物质在低温条件下的超导相、自旋有关的铁磁相及反铁磁相、超低温原子系统的玻色-爱因斯坦凝聚相等等。对于凝聚态的研究包括通过实验手段测定物质的各种性质,以及利用理论方法发展数学模型以深入理解这些物质的物理行为。 由于尚有大量的系统及现象亟待研究,凝聚态物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一,凝聚态物理学部也是美国物理学会最大的部门。此外,该领域还与化学,材料科学以及纳米技术等学科领域交叉,并与原子物理学以及生物物理学等物理学分支紧密相关。该领域研究者在理论研究中所采用的一些概念与方法也适用于粒子物理学及核物理学等领域。 晶体学、冶金学、弹性力学以及磁学等等起初是各自独立的学科领域。这些学科在二十世纪四十年代被物理学家统合为固体物理学。时间进入二十世纪六十年代后,有关液体物理性质的研究也被纳入其中,形成凝聚态物理学这一新学科。据物理学家菲利普·安德森所述,术语“凝聚态物理学”是他和首创。1967年,他们把位于卡文迪许实验室的研究组名称由“固体理论”改为“凝聚态理论”。二人觉得原来的名称并没有涵盖液体及等方面研究。但是,“凝聚态”这一术语此前已在欧洲学界出现,只是由他们普及而已。较为著名的例子是施普林格公司于1963年创建的期刊《凝聚态物理学》(Physics of Condensed Matter)。二十世纪六、七十年代的资金环境以及各国政府采取的冷战政策促使相关领域物理学家接纳了“凝聚态物理学”这一术语。他们认为这一术语相对于“固体物理学”而言更为突出了固体、液体、等离子体以及其他复杂物质研究之间的共通性。这些研究与金属和半导体在工业上的应用息息相关。贝尔实验室是最早开展凝聚态物理学研究项目的研究机构之一。 “凝聚态”这一术语在更早的文献中即已出现。例如,在1947年出版的由雅科夫·弗伦克尔撰写的专著《液体动力学理论》(Kinetic theory of liquids)的绪论中,他提出:“液体动力学理论日后也将发展为固体动力学理论的推广与延伸。实际上,更为正确的做法或许是将液体与固体统归为‘--’。”.

新!!: 量子霍尔效应和凝聚态物理学 · 查看更多 »

克劳斯·冯·克利青

克劳斯·冯·克利青(Klaus von Klitzing,),德国物理学家。 他因于1980年2月5日在格勒诺布尔高强度磁场实验室发现量子霍尔效应而获1985年诺贝尔物理学奖。.

新!!: 量子霍尔效应和克劳斯·冯·克利青 · 查看更多 »

石墨

石墨(Graphite),又稱黑鉛(Black Lead),是碳的一種同素異形體(碳的其他同素異形體有很多,為人熟悉的例如鑽石)。作为最軟的礦物之一,石墨不透明且觸感油膩,顏色由鐵黑到鋼鐵灰不等,形狀可呈晶體狀、薄片狀、鱗狀、條紋狀、層狀體,或散佈在變質岩(由煤、碳質岩石或碳質沉積物,受到區域變質作用或是岩漿侵入作用形成)之中。化学性质不活泼,具有耐腐蚀性。.

新!!: 量子霍尔效应和石墨 · 查看更多 »

石墨烯

石墨烯(Graphene)是一種由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯一直被認為是假設性的結構,無法單獨穩定存在,直至2004年,英国曼彻斯特大学物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地在實驗中從石墨中分離出石墨烯,而證實它可以單獨存在,兩人也因「在二维石墨烯材料的開創性實驗」為由,共同獲得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄卻也是最堅硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光;導熱系數高達5300 W/m·K,高於碳纳米管和金刚石,常溫下其電子遷移率超過15000 cm2/V·s,又比纳米碳管或矽晶體(monocrystalline silicon)高,而電阻率只約10-6 Ω·cm,比銅或銀更低,為目前世上電阻率最小的材料 。因為它的電阻率極低,電子的移动速度極快,因此被期待可用來發展出更薄、導電速度更快的新一代電子元件或電晶體。由於石墨烯實質上是一種透明、良好的導體,也適合用來製造透明觸控螢幕、光板、甚至是太陽能電池。 石墨烯另一個特性,是能夠在常溫下觀察到量子霍爾效應。.

新!!: 量子霍尔效应和石墨烯 · 查看更多 »

石溪大学

石溪大學(Stony Brook University,缩写:为SBU),又名纽约州立大学石溪分校(State University of New York at Stony Brook,缩写为SUNYSB),是一所成立於1957年的纽约州州立大學,坐落于美國紐約州長島東部苏福克县的石溪,是紐約州最年輕的一所大學,被諸多公開出版物列于紐約州最頂尖的公立大學之一。石溪大學是全美權威的美國大學協會(AAU)62個成員之一,排名位列美國前40名公立研究型大學,同時也是全球前1%的大學。 石溪大學于1957年成立于蠔灣,時稱長島州立大學學院。1962年遷至石溪。建校以來,石溪大學已經擴張至具有200多個主要建築,佔地超過5平方公里。 石溪大學擁有石溪大學醫療中心,是布鲁克黑文国家实验室的管理者之一。2005年,在主校區附近成立研發園區。石溪大學具有強大的區域性經濟影響力(達每年46億美元),爲長島的經濟活動貢獻了4%。 2012年,有超過24,500名學生被石溪大學主校區錄取,具有超過十五萬名校友,在13,500名雇員中,有超過3,200名職員從事學術相關工作,是長島最大的單地點雇主。在2010年的人口普查中,“石溪大學”相關區域内爲9,216。.

新!!: 量子霍尔效应和石溪大学 · 查看更多 »

科学 (期刊)

《科学》(Science)是美国科学促进会出版的一份学术期刊,為全世界最权威的学术期刊之一。 該期刊的主要關注點是出版重要的原創性科學研究和科研綜述,此外《科學》也出版科學相關的新聞、关于科技政策和科学家感兴趣的事务的观点。不像大多數科學期刊專注於某一特定領域,《科學》和它的對手《自然》期刊涵蓋了所有學科。根據期刊引證報告,《科學》在2014年的影響因子為33.611。 雖然《科學》是美國科學促進會的期刊,但發表文章并不需要美国科学促进会的會員資格。《科學》收到世界各地作者的論文。發表文章的競爭極其激烈,因為發表在這樣高引用率期刊上文章可以為作者吸引關注并有助於其職業發展。但是提交給編輯的文章只有不到10%會被接受發表,所有的研究文章在見刊之前皆須同行評審。.

新!!: 量子霍尔效应和科学 (期刊) · 查看更多 »

羅伯特·勞夫林

罗伯特·勞夫林(Robert Laughlin,1950年11月1日加利福尼亚州维塞利亚),美国物理学家,1998年获诺贝尔物理学奖。以研究量子霍爾效應而聞名。.

新!!: 量子霍尔效应和羅伯特·勞夫林 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 量子霍尔效应和电子 · 查看更多 »

马普所

#重定向 马克斯普朗克学会.

新!!: 量子霍尔效应和马普所 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 量子霍尔效应和诺贝尔物理学奖 · 查看更多 »

霍尔效应传感器

霍尔效应传感器也称霍尔传感器,是一个换能器,将变化的磁场转化为输出电压的变化。霍尔传感器首先是實用於测量磁场,此外还可测量产生和影响磁场的物理量,例如被用于接近开关、霍尔、位置测量、转速测量和电流测量设备。 其最简单的形式是,传感器作为一个模拟换能器,直接返回一个电压。在已知磁场下,其距霍尔盘的距离可被设定。使用多组传感器,磁铁的相关位置可被推断出。通过导体的电流会产生一个随电流变化的磁场,并且霍尔效应传感器可以在不干扰电流情况下而测量电流,典型的構造为将其和绕组磁芯或在被测导体旁的永磁体合成一体。 通常,霍尔效应传感器和电路相连,从而允许设备以數位(开/关)模式操作,在这种情况下可以被称为开关。工业中常见的设备,例如气缸,也被用于日常设备中,如一些打印机使用他们来监测缺纸和敞盖的情况。当键盘被要求高可靠性时,便也設計霍尔传感器在其按鍵內。 霍尔效应传感器通常被用于计量车轮和轴的速度,例如在内燃机点火定时(正時)或转速表上。其在无刷直流电动机的使用,用来检测永磁铁的位置。图示中的轮子,带有两个等距的磁铁,传感器上的电压在一个周期内将两次达到峰值,此设置通常被用来校准磁盘驱动的速率。.

新!!: 量子霍尔效应和霍尔效应传感器 · 查看更多 »

霍爾效應

霍爾效應(Hall effect)是指當固體導體放置在一個磁場內,且有電流通過時,導體內的電荷載子受到洛倫茲力而偏向一邊,繼而產生電壓(霍爾電壓)的现象。電壓所引致的電場力會平衡洛倫茲力。通過霍爾電壓的極性,可證實導體內部的電流是由帶有負電荷的粒子(自由電子)之運動所造成。霍爾效應於1879年由埃德溫·赫伯特·霍爾(Edwin Herbert Hall)發現。 除導體外,半導體也能產生霍爾效應,而且半導體的霍爾效應要強於導體。.

新!!: 量子霍尔效应和霍爾效應 · 查看更多 »

霍斯特·施特默

霍斯特·施特默(Horst Störmer,),德国物理学家,1998年获诺贝尔物理学奖。.

新!!: 量子霍尔效应和霍斯特·施特默 · 查看更多 »

薛其坤

薛其坤(),中国材料物理专家。中国科学院物理研究所研究员、清华大学教授、清华大学副校长。.

新!!: 量子霍尔效应和薛其坤 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 量子霍尔效应和量子力学 · 查看更多 »

朗道量子化

朗道量子化是指均匀磁场中带电粒子的回旋轨道发生的量子化。这些带电粒子能量在一系列分立的数值中取值,形成朗道能级。朗道能级是简并的,每一能级上电子的电子数量与外加磁场的强度成正比。由朗道量子化可以得出外磁场会导致材料中电子性质的振荡。这一理论是由苏联物理学家列夫·朗道于1930年提出的。.

新!!: 量子霍尔效应和朗道量子化 · 查看更多 »

重定向到这里:

量子霍爾效應

传出传入
嘿!我们在Facebook上吧! »