徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

量子涨落

指数 量子涨落

在量子力學中,量子涨落(quantum fluctuation。或量子真空涨落,真空涨落)是在空间任意位置對於能量的暂时变化。 從维尔纳·海森堡的不确定性原理可以推導出這結論。 根據這原理的一種表述,能量的不確定性 \Delta E 與能量改變所需的時間 \Delta t ,兩者之間的關係式為 其中 \hbar 是約化普朗克常数。 这意味著能量守恒定律好像被违反了,但是仅持续很短的时间。因此,在空間生成了由粒子和反粒子组成的虚粒子对。粒子对借取能量而生成,又在短时间内湮灭归还能量。这些产生的虚粒子的物理效应是可以被测量的,例如,電子的有效電荷與裸電荷不同。從量子电动力学的兰姆位移与卡西米尔效应,可以觀測到這效應。 量子涨落对于宇宙大尺度結構的起源非常重要,可以解釋宇宙为什么會出現超星系團、纖維狀結構這一類結構的问题:根据宇宙暴胀理论,宇宙初期是均匀的,均匀宇宙存在的微小量子涨落在暴胀之后被放大到宇宙尺度,成为最早的星-系-结构的种子。.

17 关系: 反粒子大尺度結構不确定性原理空間粒子维尔纳·海森堡超星系團能量能量守恒定律蘭姆位移量子力学量子電動力學量子退火量子泡沫虛粒子湮灭时间

反粒子

反粒子是相对于正常粒子而言的,它们的质量、寿命、自旋都与正常粒子相同,但是所有的内部相加性量子数(比如电荷、重子数、奇异数等)都与正常粒子大小相同、符号相反。有一些粒子的所有内部相加性量子数都为0,这样的粒子叫做纯中性粒子,反粒子就是它本身,比如光子、π0介子等。并不是粒子物理学中的每种粒子都有这种意义上的反粒子,中微子就没有反粒子,反微中子的定义与此不同。 反粒子的概念首先是1928年由英国物理学家狄拉克在他的空穴理论中提出的。1932年在宇宙射线中发现了正电子,证实了狄拉克的预言。1956年美国物理学家歐文·張伯倫(Owen Chamberlain)在劳伦斯-伯克利国家实验室发现了反质子。进一步的研究发现,狄拉克的空穴理论对玻色子不适用,因而不能解释所有的粒子和反粒子。根据量子场论,粒子被看作是场的激发态,而反粒子就是这种激发态对应的复共轭激发态。 如果反粒子按照通常粒子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。.

新!!: 量子涨落和反粒子 · 查看更多 »

大尺度結構

大尺度結構()在物理宇宙學中指可觀測宇宙在大範圍內(典型的尺度是十億光年)質量和光的分佈特徵。巡天和各種不同電磁波輻射波長的調查和描繪,特別是21公分輻射,獲得了宇宙結構的許多內容和特性。結構的組織看起來是跟隨著等級制度的模型,以超星系團和纖維狀結構的尺度為最上層,再大的似乎就沒有連續的結構了,這所指的就是浩瀚界限(end of greatness)現象。.

新!!: 量子涨落和大尺度結構 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 量子涨落和不确定性原理 · 查看更多 »

空間

間(Raum,space,espace,espacio,spazio),,抽象化之後形成的概念。與時間二者,構成物質存在的基本範疇,是人類思考的基本概念框架之一。人類可以用直覺了解空間,但難以概念化,因此自古希臘時代開始,就成為哲學與物理學上重要的討論課題。空間存在,是運動構成的基本條件。在物理學中,以三個維度來描述空間的存在。相對論中,將時間及空間二者,合併成單一的時空概念。伽利略、莱布尼兹、艾萨克·牛顿、伊曼努尔·康德、卡爾·弗里德里希·高斯、爱因斯坦、庞加莱都研究空间的本质。.

新!!: 量子涨落和空間 · 查看更多 »

粒子

物理科學中,粒子為佔有微小局域的物体,能夠以數個物理性质或化学性质,如体积或质量加以描述。.

新!!: 量子涨落和粒子 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

新!!: 量子涨落和维尔纳·海森堡 · 查看更多 »

超星系團

超星系團是在宇宙的大尺度結構中,比星系團和星系群更大的結構。可觀測宇宙中的超星系團約有1,000萬個。.

新!!: 量子涨落和超星系團 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 量子涨落和能量 · 查看更多 »

能量守恒定律

能量守恒定律(law of conservation of energy)闡明,孤立系统的总能量 E 保持不变。如果一个系统处于孤立环境,即不能有任何能量或質量从该系统输入或输出。能量不能无故生成,也不能无故摧毁,但它能够改变形式,例如,在炸弹爆炸的过程中,化学能可以转化为动能。 从能量守恒定律可以推导出第一類永动机永远無法實現。没有任何孤立系统能够持續對外提供能量。.

新!!: 量子涨落和能量守恒定律 · 查看更多 »

蘭姆位移

物理學中,以威利斯·蘭姆(Willis Lamb)為名的蘭姆位移或譯藍姆位移(Lamb shift)是氫原子兩個能階(^2S_與^2P_)間的微小能量差。根據狄拉克的量子理論,n量子數及j量子數相同但l量子數不同的氫原子能態應該是簡併態,也就是不會有能量差值。.

新!!: 量子涨落和蘭姆位移 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 量子涨落和量子力学 · 查看更多 »

量子電動力學

在粒子物理學中,量子電動力學(Quantum Electrodynamics,簡稱QED)是電動力學的相對論性量子場論。它在本質上描述了光與物質間的相互作用,而且它還是第一套同時完全符合量子力學及狹義相對論的理論。量子電動力學在數學上描述了所有由帶電荷粒子經交換光子產生的相互作用所引起的現象,同時亦代表了古典電動力學所對應的量子理論,為物質與光的相互作用提供了完整的科學論述。 用術語來說,量子電動力學就是電磁量子的微擾理論。它的其中一個創始人,理查德·費曼把它譽為「物理學的瑰寶」("the jewel of physics"),原因是它能為相關的物理量提供,例如電子的異常磁矩及氫原子能階的蘭姆位移。.

新!!: 量子涨落和量子電動力學 · 查看更多 »

量子退火

量子退火(英語:Quantum annealing )是一種量子漲落特性的次經驗演算法,可以在目標方程擁有多組候選解答的情況下,找到全局最優解。量子退火主要用於解決離散空間有多個局部最小值的問題(組合優化問題),像是尋找自旋玻璃的基態。 量子退火首先從具有相等權重的所有可能狀態(候選狀態)的疊加態開始,接著,系統隨著含時薛丁格方程演化。根據橫向場的時間依賴強度,導致了狀態之間的量子隧穿,造成所有候選狀態的機率幅不斷改變,實現量子並行性。如果橫場的變化速度足夠慢,則系統保持接近瞬時哈密頓量的基態,即絕熱量子計算。如果橫場的變化速度加快,則系統可能暫時離開基態,但是在最終問題哈密頓量的基態下產生更高的可能性,即diabatic量子計算。橫向場最終被關閉,且系統預計將達到與原來最優化問題的解相對應的經典易辛模型的基態。在最初的理論被提出之後,隨即有了隨機磁體量子退火成功的實驗證明。.

新!!: 量子涨落和量子退火 · 查看更多 »

量子泡沫

量子泡沫(Quantum foam),又稱時空泡沫(space time foam),是一種物理概念,最早在1955年由約翰·惠勒所提出量子力學中的一個概念。量子泡沫即為誕生前宇宙的概念化。 在量子泡沫的普朗克尺度(10-35公尺)裡,時空不再是平滑的,許多不同的形狀會像泡沫一樣隨機浮出,又隨機消失,這樣在微小世界的能量起伏,就是所謂的「量子漲落」。在量子漲落中形成的小通道,就是所謂的蟲洞,而這些量子蟲洞則又可以連接到周遭眾多的起伏泡沫,那些量子泡沫就是幼宇宙。 量子泡沫可用於極小尺度(普朗克長度量級)下量子振蕩的定性描述。在這麼小的尺度下海森堡的不確定性原理允許能量暫時產生並瞬間產生粒子和反粒子,然後在不違反物理守恆定律下互相湮滅,由於此處討論的時間和空間規模極小,且加上虛擬粒子增加的能量,根據愛因斯坦的廣義相對論,表明,在足夠小的範圍內,這些波動的能量將是大到足以使在較大的尺度上可觀測到相對平滑時空的顯著偏離,有如泡沫一般,因此,在量子泡沫裡,空間沒有一定的結構,對於各種不同的形狀和曲度都有不同的機率。.

新!!: 量子涨落和量子泡沫 · 查看更多 »

虛粒子

虛粒子(virtual particle),意即虛構粒子、假想粒子,是在量子場論的數學計算中建立的一種解釋性概念,指代用來描述亞原子過程例如撞擊過程中粒子的數學項。但是,虛粒子並不直接出現在計算過程的那些可觀測的輸入輸出量中,那些輸入輸出量只代表實粒子。虛粒子項代表那些所謂離質量殼(off mass shell)的粒子。例如,它們沿時間反演、能量不守恒、以超光速移動,每條看起來都和物理基本原理相悖。虛粒子發生在那些大致可被實輸出量相消的組合項中,因此才産生了前述那些不實的衝突。虛粒子的虛「事件」通常看起來是一個緊接著另一個發生,例如在一次撞擊的時長中,所以他們顯得短命。如果在計算中略去那些被詮釋爲代表虛粒子的數學項,計算結果將變成近似值,有可能較大地偏離完整計算得到的正確而且精確的結果。 量子理論不同於經典理論。區別在於對於亞原子過程的內部機制的計算。經典物理不能處理這種計算。海森堡認爲,在亞原子過程例如碰撞中,到底「實際上」「真正」發生了什麽,是不可直接觀測的,也沒有可用以描述的單一而且物理明確的圖像。量子力學具有這樣的特質:即它可以避開關於內部機制的思考。它把自己限制在那些實際上可觀測可感知的方面。但是,虛粒子則是一種概念化的手段,通過給亞原子過程的內在機制提供假設性的詮釋性圖像,它試圖繞過海森堡的洞察。 虛粒子不必具有和對應實粒子相等的質量。這是因爲它短命而且瞬變,所以不確定性原理允許它不必守恒能量和動量。虛粒子存活得越久,它的特徵就越接近實粒子。 虛粒子出現在許多過程中,包括粒子擴散和卡西米爾效應。在量子場論中,即使是經典力 -- 例如電荷間的電磁吸引力和推斥力 -- 也可被認爲是源于荷間的虛光子交換。 不應將反粒子跟虛粒子或者虛反粒子相混淆。.

新!!: 量子涨落和虛粒子 · 查看更多 »

湮灭

湮滅(annihilation)是指当物质和它的反物质相遇时,会发生完全的物质-能量转换,轉為能量(如以光子的形式)的過程,又稱互毀、相消、對消滅。 其遵守爱因斯坦的质能关系式E.

新!!: 量子涨落和湮灭 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 量子涨落和时间 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »