徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

酮体

指数 酮体

酮体(Ketone bodies)是在身體饥饿、禁食或某些病理状态(如糖尿病)下产生的一类化合物,它包括丙酮、乙酰乙酸和β-羟丁酸三种化合物,不过严格意义上来讲,β-羟丁酸是一种羟基酸,而非酮类。 身體在上述状态时,脂肪动员加强,大量的脂肪酸被肝细胞吸收和氧化;而同时为了维持血糖浓度的稳定,体内的糖异生也得到激活。糖异生的原料草酰乙酸被大量消耗,影响到草酰乙酸所参与的另一代谢途径三羧酸循环,大量中间物乙酰CoA得不到消耗、出现堆积,并因此生成酮体。.

26 关系: 三羧酸循环丙酮丙酮酸乳酸乙酰乙酸乙酰辅酶A琥珀酰CoA琥珀酸禁食糖尿病糖异生糖类线粒体基质细胞色素P450生酮作用草酰乙酸血糖身體胆固醇生物合成脱羧反应脱氢酶脂肪脂肪酸酮症酮酸中毒

三羧酸循环

三羧酸循環(tricarboxylic acid cycle) ,亦作檸檬酸循環(citric cycle),是有氧呼吸的第二階段。該循環以循環中一個重要中間體檸檬酸命名,又因爲檸檬酸是一種,該反應又稱爲三羧酸循環。該循環亦因由德國生物化學家克雷布斯(Krebs)發現而稱爲克雷布斯循環(Krebs cycle),克雷布斯亦因此項貢獻獲1953年諾貝爾生理學或醫學獎。丙酮酸在經過丙酮酸脫氫酶系氧化,生成乙酰輔酶A(acetyl-CoA)後,與四碳二元羧酸草酰乙酸化合,生成檸檬酸,進入檸檬酸循環。隨後,經過一系列反應,兩個碳原子轉化爲二氧化碳(CO2)分子,檸檬酸中蘊藏的化學能轉化至還原的輔酶中。檸檬酸循環的終產物仍然是草酰乙酸,這使得該循環能源源不斷地氧化輸入循環的乙酰輔酶A。 一般情況下,檸檬酸循環產生的還原輔酶會連同糖酵解過程產生的還原輔酶一同,在氧化磷酸化過程中氧化,生成大量的ATP。一分子的乙酰輔酶A在被檸檬酸循環代謝後,可產生兩分子的CO2分子、三分子NADH、一分子FADH2,以及一分子GTP。 檸檬酸循環可以代謝糖類、脂質,以及大部分氨基酸,因爲這三類物質都能轉換爲乙酰輔酶A或檸檬酸循環的中間體,從而進入檸檬酸循環之中。另外,檸檬酸循環的許多中間體可供生物體利用。當中間產物不足時,可通過添補反應對中間產物進行補充。生物體最重要的填補反應是在丙酮酸羧化酶催化下,以一分子丙酮酸和一分子二氧化碳分子爲原料,合成一分子草酰乙酸的反應。 檸檬酸循環發生於線粒體基質中,但也會部分地在線粒體內膜或嵴膜上發生。.

新!!: 酮体和三羧酸循环 · 查看更多 »

丙酮

丙酮也稱作二甲基酮、二甲基甲酮,简称二甲酮,或称醋酮、木酮,是最简单的酮,化學式CH3COCH3,為一種有特殊臭味、薄荷气味的無色可燃液體。.

新!!: 酮体和丙酮 · 查看更多 »

丙酮酸

丙酮酸(pyruvic acid,化學式:CH3COCOOH)是一種α-酮酸,其燃点为82 °C,在生物化學代謝途徑中扮演重要角色。丙酮酸的羧酸鹽陰離子(carboxylate anion)被稱之為丙酮酸鹽(pyruvate,這個字在中文裡也經常簡單地稱作丙酮酸)。.

新!!: 酮体和丙酮酸 · 查看更多 »

乳酸

乳酸(IUPAC學名:2-羥基丙酸)是一种化合物,它在多种生物化学过程中起作用。它是一种羧酸,分子式是C3H6O3。它是一个含有羟基的羧酸,因此是一个α-羟酸(AHA)。在水溶液中它的羧基释放出一个质子,而产生乳酸根离子CH3CHOHCOO−。 乳酸有手性,有两个旋光异构体。一个被称为L-(+)-乳酸或(S)-乳酸,另一个被称为D-(-)-乳酸或(R)-乳酸。L-(+)-是在生物学上重要的异构体。.

新!!: 酮体和乳酸 · 查看更多 »

乙酰乙酸

乙酰乙酸(IUPAC名:3-丁酮酸)化学式:C4H6O3,是最简单的β-酮酸,室温下为无色结晶。它有弱酸性,可以与水和醇混溶。与其他β-酮酸一样,乙酰乙酸不稳定,加热到100 °C时便迅速分解为丙酮和二氧化碳。乙酰乙酸酯比乙酰乙酸稳定得多,因此用途也比较广。 乙酰乙酸由乙酰乙酸乙酯水解得到。一般都是在0 °C时制备,而且现配先用。 乙酰乙酸在碱溶液中更加稳定。37 °C时,酸性溶液中的乙酰乙酸半衰期为140分钟,在碱性溶液中则为130小时。 乙酰乙酸是脂肪酸β氧化时,乙酰辅酶A的缩合产物,是酮体的三个组成之一。 脂肪酸代谢过度之后,糖尿病、饥饿、急性乙醇中毒等均会使乙酰乙酸的含量增高。可用于鉴别和监护糖尿病酮症酸中毒病人的诊断和治疗。.

新!!: 酮体和乙酰乙酸 · 查看更多 »

乙酰辅酶A

乙酰辅酶A(acetyl-CoA)是活化了的乙酸,由乙酰基(CH3CO-)与辅酶A的巯基以高能的硫酯键相连。乙醯輔酶A是脂肪酸的β-氧化及糖酵解后产生的丙酮酸脱羧後的产物。 在三羧酸循环的第一步,乙酰基转移到草酰乙酸中,生成柠檬酸,--。.

新!!: 酮体和乙酰辅酶A · 查看更多 »

琥珀酰CoA

#重定向 琥珀酰辅酶A.

新!!: 酮体和琥珀酰CoA · 查看更多 »

琥珀酸

琥珀酸(IUPAC中文名稱為丁二酸;傳統認為它是琥珀的精髓)是一種二羧酸,化學式为HOOC–CH2–CH2–COOH。 在常溫的情況下,純琥珀酸是固體,呈無色無味的晶体。它的熔點及沸點分別是185°C及235°C。它形成的陰離子稱為琥珀酸根离子,是三羧酸循環其中的一分子,且是能夠在以下化學反應中放出電子予電子傳遞鏈: 這個過程由琥珀酸脫氫酶(或是由粒線體電子傳遞鏈中的複合物II)所催化。該複合物是4亞單位膜結合脂蛋白,配合琥珀酸的氧化作用及泛醌的還原作用。中介電子載體為黃素腺嘌呤二核苷酸及3個B亞單位Fe2S2群集部份。 琥珀酸的酯稱為琥珀酸酯。.

新!!: 酮体和琥珀酸 · 查看更多 »

禁食

禁食(fasting)是指个人有意識地停止進食某些或所有食物,甚至飲料。禁食亦包括禁止食用某些特定食物(例如肉類、用不同方式处理的食物)。.

新!!: 酮体和禁食 · 查看更多 »

糖尿病

糖尿病(diabetes mellitus,缩写为DMs,简称diabetes)是一種代謝性疾病,它的特徵是患者的血糖長期高於標準值。高血糖會造成俗稱「三多一少」的症狀:、 、及體重下降。對於第一型糖尿病,其症狀會在一個星期至一個月期間出現,而對於第二型糖尿病則較後出現。不論是哪一種糖尿病,如果不進行治療,可能會引發許多併發症。一般病徵有視力模糊、頭痛、肌肉無力、傷口癒合緩慢及皮膚很癢。急性併發症包括糖尿病酮酸血症與;嚴重的長期併發症則包括心血管疾病、中風、慢性腎臟病、、以及視網膜病變等。 糖尿病有兩個主要成因:胰臟無法生產足夠的胰島素,或者是細胞對胰島素不敏感。全世界糖尿病患人數,1997 年為 1 億 2,400 萬人,2014年全球估计有4.22亿成人患有糖尿病。由於糖尿病患人數快速增加及其併發症,造成財務負擔、生活品 質下降,因此聯合國將每年的 11 月 14 日定為「聯合國世界糖尿病日」。.

新!!: 酮体和糖尿病 · 查看更多 »

糖异生

糖异生(Gluconeogenesis)又稱糖質新生作用、糖原異生作用,指的是非碳水化合物(乳酸、丙酮酸、甘油、生糖氨基酸等)转变为葡萄糖的过程。糖异生保证了机体的血糖水平处于正常水平。糖异生的主要器官是肝。肾在正常情况下糖异生能力只有肝的十分之一,但长期饥饿时肾糖异生能力可大为增强。.

新!!: 酮体和糖异生 · 查看更多 »

糖类

醣類(Carbohydrate)又称碳水化合物,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称,一般由碳、氫與氧三種元素所組成,廣布于自然界。醣類的另一個名稱为“碳水化合物”,其由來是根据生物化学家先前發現一类物质可写成经验分子式:Cn(H2O)n,其氢与氧元素的比例始终为2:1,故以为醣類是碳和水的化合物;但后来的发现证明了许多糖类并不符合上述分子式,如:鼠李糖(C6H12O5);而有些物質符合上述分子式却不是糖类,如甲醛(CH2O)等。醣類為人體之重要的營養素,主要分成三大類:單醣、雙醣和多醣。在一般情況下,單醣和雙醣是較小的(低分子量)的碳水化合物,通常稱為--。例如,葡萄糖是單醣,蔗糖和乳糖是雙醣(見圖示)。 糖类在生物体上扮演著众多的角色,像多醣可作为儲存養分的物質,如澱粉和糖原;或作为動物外骨骼和植物細胞的細胞壁,如:甲殼素和纖維素;另如五碳醛醣的核糖是構成各種輔因子的不可或缺失之物質,如ATP、FAD和NAD)也是一些遺傳物質分子的骨幹(如 DNA和 RNA)。醣類的眾多衍生物同時也與免疫系統、受精、預防疾病、血液凝固和生長等有極大的關聯。 在食品科學和其他非正式的場合中,碳水化合物通常是指:富有澱粉(如五穀類、麵包或麵食)或簡單的醣類的食物(如食糖)。.

新!!: 酮体和糖类 · 查看更多 »

线粒体基质

線粒體基质是線粒體中由線粒體内膜包裹的内部空间,其中充满无定形液体,含有参与三羧酸循环、脂肪酸氧化、氨基酸降解等生化反应的酶类。其中,苹果酸脱氢酶是线粒体基质的标志酶。线粒體基质中的某些酶系组成网状结构,与线粒體内膜内侧有一定的连接,利于上述酶促反应所形成的NADH转移至内膜的电子传递链中。除各种可溶性酶外,線粒體基质还含有线粒体自身的DNA(即线粒體DNA)和核糖体(粒線體核糖体)。 线粒體基质中每1μL的水溶解了约1.25mg的蛋白质,而细胞质基质中每1μL的水溶解了约0.26mg蛋白质,所以线粒體体基质较细胞质基质黏稠。虽然已知线粒体内膜含有可调节水分子转运的水通道蛋白,线粒体维持内膜两侧的渗透平衡的方式仍不明晰。.

新!!: 酮体和线粒体基质 · 查看更多 »

细胞色素P450

细胞色素P450(cytochrome P450)超家族(官方缩写为CYP)是一大类多种多样的酶。大多数细胞色素P450酶的功能是催化氧化有机化合物。细胞色素P450的受質包括有:如脂质与甾体激素的代谢中间产物,亦有药物与其他毒性化学物质等非生物物质。细胞色素P450类是涉及药物代谢与生物激活作用的主要酶类,约占到各种代谢反应总数的75%。 由细胞色素P450催化的最常见反应就是单加氧酶反应,例如将氧气中的一个氧原子插入到有机底物(以RH表示)中,而另一个氧原子被还原形成水: RH + O2 + 2H+ + 2e– → ROH + H2O thumb.

新!!: 酮体和细胞色素P450 · 查看更多 »

生酮作用

生酮作用(Ketogenesis,又称酮体生成)是指脂肪酸降解过程结果所致的酮体生成过程。.

新!!: 酮体和生酮作用 · 查看更多 »

草酰乙酸

草醯乙酸(Oxaloacetic acid, OAA, 或稱草乙酸,oxalacetic acid)是一種結晶有機化合物,化學式:HO2CC(O)CH2CO2H。其共軛鹼為生物體內許多代謝常見的中間物。參與糖質新生、尿素循環、乙醛酸循環、胺基酸合成、脂肪酸合成以及檸檬酸循環等作用。.

新!!: 酮体和草酰乙酸 · 查看更多 »

血糖

血糖(Blood sugar)是指血液中的葡萄糖。消化後的葡萄糖由小肠进入血液,并被运输到机体中的各个细胞,是细胞的主要能量来源。.

新!!: 酮体和血糖 · 查看更多 »

身體

身體是每個生物的實體。身體是生物的外表,可表示該生物的健康程度,以致表示該生物是否死亡。.

新!!: 酮体和身體 · 查看更多 »

胆固醇生物合成

胆固醇是真核生物细胞膜的组分,也是多种生物活性物质的前体,因此它的生物合成和代谢转变以及转运一直是生物学家关注焦点之一。其过程大致为:乙酰CoA→甲羟戊酸→二甲烯丙基焦磷酸→鲨烯→胆固醇。 哺乳动物几乎所有细胞都能合成胆固醇,其中最活跃的是肝细胞(80%),其次是小肠上皮细胞(10%)和皮肤(5%)。细胞内合成胆固醇的场所是细胞质,其中一部分反应在细胞液发生,另一部分则在内质网上进行。.

新!!: 酮体和胆固醇生物合成 · 查看更多 »

脱羧反应

脱羧反应是有机化合物中的羧基(-COOH)转变为氢(-H),同时放出二氧化碳(CO2)的反应。.

新!!: 酮体和脱羧反应 · 查看更多 »

脱氢酶

脱氢酶(dehydrogenase;在论文中也简称为DHO是一种以转移一个或多个氢化物(H-)到一个受体的形式氧化一个底物的酶,这些受体常为NAD+/NADP+或是一种黄素辅酶,例如黄素腺嘌呤二核苷酸或黄素单核苷酸。.

新!!: 酮体和脱氢酶 · 查看更多 »

脂肪

脂肪(Fat)是室温下呈固态的油脂(室溫下呈液態的油脂稱作油),多来源于人和动物体内的脂肪组织,是一種羧酸酯,由碳、氫、氧三種元素組成。與醣類不同,脂肪所含的碳、氫的比例較高,而氧的比例較低,所以發熱量比醣類高。脂肪最後產生物是膽固醇(形成血栓)。脂肪組織是絕大多數脊椎動物特有的構造,可以使之一段時間不進食,而不會能量耗竭而死;脂肪體則為昆蟲特有,主代謝類似脊椎動物的肝。 脂肪是由甘油和脂肪酸組成的三酰甘油酯,其中甘油的分子比較簡單,而脂肪酸的種類和長短卻不相同,包括飽和脂肪酸、單不飽和脂肪酸、多不飽和脂肪酸。 食用脂肪是人可直接食用或烹调的油脂,主要成分是三酸甘油酯,也就是中性脂肪。脂肪是常見的食物營養素之一,亦是三種提供能量的營養之一。 食物中的脂肪在腸胃中消化,吸收後大部分又再度轉變為脂肪。它主要分佈在人體皮下組織、大網膜、腸繫膜和腎臟周圍等處。體內脂肪的含量常隨營養狀況、能量消耗等因素而變動。 過多的脂肪讓我們行動不便,而且血液中過高的血脂,很可能是誘發高血壓和心臟病的主要因素。.

新!!: 酮体和脂肪 · 查看更多 »

脂肪酸

脂肪酸(Fatty acid)是一类羧酸化合物,由碳氫组成的烃类基团连结-zh-hant:羧基;zh-hans:羧酸;-所構成。 三个长链脂肪酸与甘油形成三酸甘油酯(Triacylglycerols),為脂肪的主要成分,歸於脂類。.

新!!: 酮体和脂肪酸 · 查看更多 »

酮是一类有机化合物,通式RC(.

新!!: 酮体和酮 · 查看更多 »

酮症

酮症是一種代謝狀態,當體內的葡萄糖不足時,肝臟會將脂肪轉換成脂肪酸與酮體,取代原本由葡萄糖負責的能量來源。當血中酮體的含量大於0.5mM,且有長時間的低血糖及低胰島素含量,即為『酮症』。 當肝臟中儲存的肝醣用盡時,便會進行生酮作用(ketogenesis),產生酮體;另外代謝中鏈三酸甘油酯亦會有酮體的產生。 身體主要利用的酮體為乙醯乙酸(acetoacetate)及β-羥基丁酸(β-hydroxybutyrate),而酮體的調節主要由胰島素及升糖素控制。大部分的細胞都可以用葡萄糖及酮體做為能量。在酮症的狀態,身體會利用游離脂肪酸及糖質新生作為剩餘的能量來源。 長期酮症可能由於禁食或生酮飲食導致,現今有些人會故意處於酮症狀態,作為一些疾病的治療方式,如糖尿病、頑固型癲癇。在一般糖解作用時,胰島素會促進脂肪的儲存及阻止脂肪從脂肪細胞釋放;而在酮症狀態下,脂肪細胞會釋放脂肪並代謝之產生能量。因此,酮症被認為是一種脂肪消耗的模式。 酮症與酮酸中毒相似,但酮酸中毒是急性危及生命的狀態,需要立即的醫學治療,而酮症可以是生理性的,在某些情況下(如抗藥性癲癇),酮症可能是對健康有益的。.

新!!: 酮体和酮症 · 查看更多 »

酮酸中毒

酮酸中毒(Ketoacidosis),是一种病理性代谢状态,标志为极高且无法控制的酮症。酮酸中毒的情况下,人体无法足够地控制酮类的产生,导致严重的酮酸堆积使得血液pH极大地降低。在极端情况下,酮酸中毒是可致命的。 酮酸中毒在未经治疗的1型糖尿病患者中最常见,当检测到对呼吸底物的需求时,肝脏作为应答而分解脂肪与蛋白质。长时间的酒精中毒可能会导致酒精性酮症酸中毒。 酮酸中毒可经患者的呼吸而闻得到——由于丙酮,是一种乙酰乙酸自发分解而成的直接副产物。它常被描述为闻起来像水果或指甲膏清洗剂。酮症也会被闻到,但其气味通常更细微些,这是因为丙酮含量较低。.

新!!: 酮体和酮酸中毒 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »