徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

逻辑代数

指数 逻辑代数

在数学和数理逻辑中,逻辑代数(有时也称开关代数、布尔代数)是变量的值仅为真和假两种真值(通常记作 1 和 0)的代数的子领域。初等代數中变量的值是数字,并且主要运算是加法和乘法,而逻辑代数的主要运算有合取与,记为∧;析取或 ,记为∨;否定非 ,记为¬ 。因此,它是以普通代数描述数字关系相同的方式来描述逻辑关系的形式主义。 逻辑代数是乔治·布尔(George Boole)在他的第一本书《逻辑的数学分析》(1847年)中引入的,并在他的《思想规律的研究》(1854年)中更充分的提出了逻辑代数。 根据Huntington“布尔代数”这个术语,最初是由Sheffer于1913年提出。 逻辑代数一直是数字电路设计的基础,并且所有现代编程语言提供支持。它也用在集合论和统计学中。.

32 关系: 卡诺图吸收律對合布尔域布尔函数乔治·布尔交換律德摩根定律初等代數分配律冪等统计学结合律真值真值表相干逻辑补运算规范形式 (布尔代数)變數邏輯閘集合论逻辑与逻辑异或逻辑函数逻辑非逻辑或抽象代数有界集合施普林格科学+商业媒体数学数字电路数理逻辑

卡诺图

卡诺图是真值表的变形,它可以将有n个变量的逻辑函数的2^n个最小项组织在给定的长方形表格中,同时为相邻最小项(相邻与项)运用邻接律化简提供了直观的图形工具。但是,如果需要处理的逻辑函数的自变量较多,那么卡诺图的行列数将迅速增加,使图形更加复杂;此外,卡诺图的图形化表示方法不适合直接用于算法的设计,因此计算机辅助工程工具一般不会使用卡诺图来进行逻辑函数的优化。 卡诺图是贝尔实验室的电信工程师,在1953年发明的。.

新!!: 逻辑代数和卡诺图 · 查看更多 »

吸收律

在抽象代数中,吸收律是连接一对二元运算的恒等式。 任何两个二元运算比如 $ 和 %,服从吸收律如果: 运算 $ 和 % 被称为对偶对。 设有某个集合闭合在两个二元运算下。如果这些运算是交换律、结合律的,并满足吸收律,结果的抽象代数就是格,在这种情况下这两个运算有时叫做交和并。因为交换律和结合律经常是其他代数结构的性质,吸收律是格的定义性质。由于布尔代数和 Heyting代数是格,它们也服从吸收律。 因为经典逻辑是布尔代数的模型,直觉逻辑是 Heyting代数的模型,吸收律对分别指示逻辑或和逻辑与的运算 \vee 和 \wedge 成立,因此.

新!!: 逻辑代数和吸收律 · 查看更多 »

對合

在数学中,对合(involution)或对合函数,是逆函数等于自身的函数,就是说.

新!!: 逻辑代数和對合 · 查看更多 »

布尔域

布尔域 B 是一般的 2-元素集合,比如 B.

新!!: 逻辑代数和布尔域 · 查看更多 »

布尔函数

在数学中,布尔函数(Boolean function)描述如何基于对布尔输入的某种逻辑计算确定布尔值输出。它们在复杂性理论的问题和数字计算机的芯片设计中扮演基础角色。布尔函数的性质在密码学中扮演关键角色,特别是在对称密钥算法的设计中(参见S-box)。.

新!!: 逻辑代数和布尔函数 · 查看更多 »

乔治·布尔

喬治·布爾(George Boole,,英語發音 ),英格兰数学家和哲学家,数理逻辑学先驱。.

新!!: 逻辑代数和乔治·布尔 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 逻辑代数和交換律 · 查看更多 »

德摩根定律

在命题逻辑和逻辑代数中,德摩根定律De Morgan's laws(或称笛摩根定理、对偶律)是关于命题逻辑规律的一对法则。 奥古斯塔斯·德摩根首先发现了在命题逻辑中存在着下面这些关系: 即: 德摩根定律在数理逻辑的定理推演中,在计算机的逻辑设计中以及数学的集合运算中都起着重要的作用。他的发现影响了乔治·布尔从事的逻辑问题代数解法的研究,这巩固了德摩根作为该规律的发现者的地位,尽管亚里士多德也曾注意到类似现象、且这也为古希腊与中世纪的逻辑学家熟知(引自Bocheński《形式逻辑历史》)。.

新!!: 逻辑代数和德摩根定律 · 查看更多 »

初等代數

初等代數是一個初等且相對簡單形式的代數,教導對象為還沒有數學算術方面正規知識的學生們。當在算術中只有數字和其運算(如:加、減、乘、除)出現時,在代數中也會使用符號(如:x、y或a、b)來表示數字,這些符號稱做變數。這是很有用的,因為:.

新!!: 逻辑代数和初等代數 · 查看更多 »

分配律

在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.

新!!: 逻辑代数和分配律 · 查看更多 »

冪等

在數學裡,冪等有兩種主要的定義。.

新!!: 逻辑代数和冪等 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

新!!: 逻辑代数和统计学 · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

新!!: 逻辑代数和结合律 · 查看更多 »

真值

在逻辑中,真值(truth value),又稱逻辑值(logical value),是指示一个陈述在什么程度上是真的。在計算機編程上多稱做布林值、布爾值。 在经典逻辑中,唯一可能的真值是真和假。但在其他逻辑中其他真值也是可能的:模糊逻辑和其他形式的多值逻辑使用比简单的真和假更多的真值。 在代数上说,集合形成了简单的布尔代数。可以把其他布尔代数用作多值逻辑中的真值集合,但直觉主义逻辑把布尔代数推广为海廷代数。 在topos理论中,topos的主客对象分类器接管了真值集合的位置。.

新!!: 逻辑代数和真值 · 查看更多 »

真值表

真值表是使用於邏輯中(特別是在連結邏輯代數、布爾函數和命題邏輯上)的一類數學用表,用來計算邏輯表示式在每種論證(即每種邏輯變數取值的組合)上的值。尤其是,真值表可以用來判斷一個命題表示式是否對所有允許的輸入值皆為真,亦即是否為邏輯有效的。 「用真值表製表的推理模式是由弗雷格、查尔斯·皮尔士和恩斯特·施羅德於1880年代所发明的。這種表格於1920年代之後廣泛地發現在許多文獻上頭(扬·武卡谢维奇、埃米爾·波斯特、维特根斯坦)”(蒯因, 39)。路易斯·卡罗早在1894年就公式化了真值表来解决特定问题,但是包含他这项工作的手稿直到1977年才被发现 。维特根斯坦的《逻辑哲学论》利用真值表把真值函数置于序列中。这个著作的广泛影响导致了真值表的传播。 真值表被用來計算以「決策程序」建構的命題表示式的值。命題表示式可以是一個原子公式(命題常數、命題變數或命題函數,如Px或P(x)),或以邏輯算子(如邏輯與(\land)、邏輯或(\lor)、邏輯非(\lnot))由原子公式建構出來的公式。舉例來說,Fx \land Gx即是個命題表示式。 真值表中的列标题展示了 (i)命题函数与/或变量,和 (ii)建造自这些命题函数或变量和运算符的真值泛函表达式。行展示对 (i)和 (ii)的T或F指派的每个可能的求值。换句话说,每行都是对 (i)和 (ii)的不同解释。 经典(就是说二值)逻辑的真值表限定于只有两个真值是可能的布尔逻辑系统,它们是“真”或“假”,通常在表中简单的表示为T和F。.

新!!: 逻辑代数和真值表 · 查看更多 »

相干逻辑

干逻辑,也叫做相关逻辑,是一类非经典亚结构逻辑,它在蕴涵上施加了特定限制。(一般但不完全的,澳大利亚逻辑学家称之为relevant logic,其他说英语的逻辑学家称之为relevance logic)。 相干逻辑致力于捕获蕴含在经典真值泛函逻辑中被“实质蕴涵”算子所忽略的那些方面。这个想法不是新的:它导致C. I. Lewis发明模态逻辑,特别是严格蕴涵,依据是在经典逻辑中谬误蕴涵任何命题是成立的。因此"如果我是教皇,则2+2.

新!!: 逻辑代数和相干逻辑 · 查看更多 »

补运算

设L是带有最大元素1和最小元素0的有界格。L的两个元素x和y是互补(相互为补元)的,当且仅当: 在这种情况下,它们被指示为¬x.

新!!: 逻辑代数和补运算 · 查看更多 »

规范形式 (布尔代数)

布尔代数中,由标准逻辑运算符组成的布尔函数可以按利用了对偶性“极小项”和“极大项”的概念的规范形式来表达。.

新!!: 逻辑代数和规范形式 (布尔代数) · 查看更多 »

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

新!!: 逻辑代数和變數 · 查看更多 »

邏輯閘

逻辑门是在集成電路上的基本組件。简单的邏輯閘可由晶体管组成。這些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。高、低电平可以分别代表逻辑上的“真”与“假”或二进制当中的1和0,从而实现邏輯运算。常见的逻辑门包括“與”閘,“或”閘,“非”閘,“異或”閘(也稱:互斥或)等等。 逻辑门是組成數字系統的基本結構,通常组合使用實現更為複雜的邏輯運算。一些廠商通過邏輯門的組合生產一些實用、小型、集成的產品,例如可程式邏輯裝置等。.

新!!: 逻辑代数和邏輯閘 · 查看更多 »

集合论

集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.

新!!: 逻辑代数和集合论 · 查看更多 »

逻辑与

在逻辑和数学中,逻辑合取或逻辑与或且是一个二元逻辑運算符。如果其两个变量的真值都为“真”,其结果为“真”,否则其结果为“假”。.

新!!: 逻辑代数和逻辑与 · 查看更多 »

逻辑异或

在--邏輯中,逻辑算符互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XOR或EOR或⊕。与一般的邏輯或OR不同,當兩兩數值相同為否,而數值不同時為真。 两个运算元(命题):A与B的异或一般写成A异或B,或者写成A \quad \mathrm \quad B、A \oplus B、A \neq B等等。在C语言中,写作A^B。.

新!!: 逻辑代数和逻辑异或 · 查看更多 »

逻辑函数

#重定向 邏輯函數.

新!!: 逻辑代数和逻辑函数 · 查看更多 »

逻辑非

逻辑非是布尔代数中一种一元运算。它的运算结果是将运算元的真值--。 命题A的非可以有几种写法:.

新!!: 逻辑代数和逻辑非 · 查看更多 »

逻辑或

逻辑或(logical or)又称逻辑析取(logical disjunction)、邏輯選言,是逻辑和数学概念中的一个二元逻辑算符。其运算方法是:如果其两个变量中有一个真值为“真”,其结果为“真”,两个变量同时为假,其结果为“假”。.

新!!: 逻辑代数和逻辑或 · 查看更多 »

抽象代数

抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.

新!!: 逻辑代数和抽象代数 · 查看更多 »

有界集合

在数学分析和有关的数学领域中,一个集合被称为有界的,如果它在某種意义上有有限大小。反过来说,不是有界的集合就叫做无界。.

新!!: 逻辑代数和有界集合 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

新!!: 逻辑代数和施普林格科学+商业媒体 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 逻辑代数和数学 · 查看更多 »

数字电路

数字电路或数字集成电路是由许多的逻辑门组成的复杂电路。与模拟电路相比,它主要进行数字信号的处理(即信号以0与1两个状态表示),因此抗干扰能力较强。数字集成电路有各种门电路、触发器以及由它们构成的各种组合逻辑电路和时序逻辑电路。一个数字系统一般由控制部件和运算部件组成,在时脈的驱动下,控制部件控制运算部件完成所要执行的动作。通过類比數位轉換器、數位類比轉換器,数字电路可以和模拟电路互相连接。.

新!!: 逻辑代数和数字电路 · 查看更多 »

数理逻辑

数理逻辑是数学的一个分支,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。 数理逻辑的研究范围是逻辑中可被数学模式化的部分。以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。.

新!!: 逻辑代数和数理逻辑 · 查看更多 »

重定向到这里:

布耳代數邏輯代數

传出传入
嘿!我们在Facebook上吧! »