徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

連心力

指数 連心力

在物理學裏,作用力可以分類為連心力(central force)與非連心力。連心力的方向永遠指向一個固定點;稱此點為力中心點。許多宇宙最基本的力,像萬有引力、靜電力,都是連心力。而勞侖茲力的磁力部分則乃非連心力。連心力以方程式表達為 其中,\mathbf是連心力,\mathbf是從力中心點到檢驗位置的徑向向量。 連心力可以進一步細分為兩種版本:強版本和弱版本。強版連心力要求連心力跟徑向距離有關: 弱版連心力沒有這嚴厲的條件。在物理學裏,大多數重要的連心力都是強版連心力;簡單擺的繩索作用於擺錘的拉力是一種弱版連心力,這拉力的方向是徑向方向,但對於小角度擺動,拉力的大小可以近似為一個常量,是擺錘感受到的重力大小。.

25 关系: 力矩原點导数三体问题伯特蘭定理引力形變保守力克卜勒問題勒壤得轉換純量勢物理学牛顿万有引力定律相空間靜電學角动量极坐标系梯度洛伦兹力旋度拉格朗日量拉格朗日方程式

功(work),也叫机械功,是物理学中表示力对位移的累积的物理量,指从一种物理系统到另一种物理系统的能量转变,尤其是指通过使物体朝向力的方向移动的力的作用下能量的转移。与机械能相似的是,功也是标量,国际单位制单位为焦耳。 “功”一词最初是法国数学家贾斯帕-古斯塔夫·科里奥利创造的。 由动能定理,若一个外力作用于一物体使之动能从Ek0增至Ek,那么,此力所作的机械功为: 其中m是物体的质量,v是物体的速度。 机械功就是力与位移的內積: 若力与位移的夹角小于直角,则机械功为正,亦称为力作正功。若力与位移的夹角大于直角,则机械功为负,或力作负功,或物体克服力作功。 若力的方向与位移方向垂直,则此力不作功: 舉例來說:一個10牛頓(F.

新!!: 連心力和功 · 查看更多 »

在物理學中,力是任何導致自由物體歷經速度、方向或外型的變化的影響。力也可以藉由直覺的概念來描述,例如推力或拉力,這可以導致一個有質量的物體改變速度(包括從靜止狀態開始運動)或改变其方向。一個力包括大小和方向,這使力是一個向量。牛頓第二定律,\mathbf.

新!!: 連心力和力 · 查看更多 »

力矩

在物理学裏,作用力促使物體繞著轉動軸或支點轉動的趨向,稱為力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推擠或拖拉涉及到作用力 ,而扭转則涉及到力矩。如图右,力矩\boldsymbol\,\!等於径向向量\mathbf\,\!与作用力\mathbf\,\!的叉积。 簡略地说,力矩是一種施加於好像螺栓或飛輪一類的物體的扭轉力。例如,用扳手的開口箝緊螺栓或螺帽,然後轉動扳手,這動作會產生力矩來轉動螺栓或螺帽。 根據国际单位制,力矩的单位是牛顿\cdot米。本物理量非能量,因此不能以焦耳(J)作單位;根據英制单位,力矩的单位则是英尺\cdot磅。力矩的表示符号是希腊字母\boldsymbol\,\!,或\mathbf\,\!。 力矩與三個物理量有關:施加的作用力\mathbf\,\!、從轉軸到施力點的位移向量\mathbf\,\!、兩個向量之間的夾角\theta\,\!。力矩\boldsymbol\,\!以向量方程式表示為 力矩的大小.

新!!: 連心力和力矩 · 查看更多 »

原點

在數學上,座標系統的原點是指座標軸的交點。 在常用的二維(或三維)直角座標系中,分別有二個(或三個)互相垂直的座標軸。原點為各座標軸的交點,並且將各座標軸分為二段,在原點一側的座標為正值,另一側則為负值。 在二維直角座標系中,原點的座標為(0,0)。而在三維直角座標系中,原點的座標為(0,0,0)。 Category:坐标系 Category:初等几何.

新!!: 連心力和原點 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 連心力和导数 · 查看更多 »

三体问题

三体问题是天体力学中的基本力学模型。.

新!!: 連心力和三体问题 · 查看更多 »

伯特蘭定理

在經典力學裏,伯特蘭定理闡明,只有兩種位勢V可以給出閉合軌道:.

新!!: 連心力和伯特蘭定理 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 連心力和引力 · 查看更多 »

形變

在機械工程學裏,形變定義為由於外力作用而造成的形狀改變,這外力可能是拉力、推力、剪力、彎力或扭力等。形變時常是用應變來描述。 如右圖可見,壓縮負載造成了圓筒的形變,原本的形狀(虛線)已經改變(形變),圓筒的側面凸出。圓筒雖然沒有裂開或敗壞,但其強度並不足以在負載下保持形狀不變,因此側面凸漲出來。 形變可能是暫時性的,就像放鬆的彈簧會回到原來的長度;形變也可能是永久性的,當物體不可逆地彎曲時便為永久形變。若过了一定的限度则不能恢复原状,这样的形变叫做塑性形变,此限度称作弹性限度。.

新!!: 連心力和形變 · 查看更多 »

保守力

假设一感受着某作用力的粒子,從初始位置移動到終結位置,而此作用力所做的功跟移動路徑無關,則稱此力為保守力(conservative force),又稱為守恆力。等價地說,假設一個粒子從某位置,移動經過一條閉合路徑後,又回到原本位置,則作用於這粒子的保守力所做的機械功(保守力對於整個閉合路徑的積分)等於零。假設在一個物理系統裏,所有的作用力都是保守力,則稱此物理系統為「保守系統」,又稱為「守恆系統」。對於這種系統,在空間裏每一個位置,都可以給定位勢一個唯一數值。假設粒子從某位置移動至另一位置,則由於保守力的作用,粒子的勢能可能會有所改變,但前後差值與移動經過的路徑無關。例如,重力是一種保守力,而摩擦力是一種非保守力。.

新!!: 連心力和保守力 · 查看更多 »

克卜勒問題

在經典力學裏,克卜勒問題是二體問題的一個特別案例。假若,兩個物體以連心力\mathbf\,\!互相作用;力的大小與距離r\,\!的平方成反比。則稱此物理系統所涉及的問題為克卜勒問題。反平方連心力以公式表示為 其中,k\,\!是常數,\hat\,\!是徑向單位向量。 連心力可以是吸引性的(k),也可以是排斥性的(k>0\,\!),對應的位勢為 克卜勒問題是因天文學家約翰內斯·克卜勒而命名。他推出了在天文學歷史上,具有關鍵價值的克卜勒定律。遵守克卜勒定律的作用力有那些特性呢(逆克卜勒問題)?在這方面,他也做了很多的研究。 在很多狀況下,會遇到克卜勒問題。天體力學時常會涉及克卜勒問題,因為牛頓萬有引力遵守反平方定律。例如,人造衛星環繞著地球,行星環繞著太陽,或雙星系統。克卜勒問題涉及了兩個電荷子的物理運動,因為靜電學的庫侖定律遵守反平方定律。例如,氫原子,正子素,與緲子偶素。這些典型系統,在測驗物理理論與測量自然常數上,都扮演了很重要的角色。 在經典力學裏,克卜勒問題與諧振子問題是兩個最基本的問題。只有這兩個問題的解答是閉合軌道;也就是說,物體從一點移動,經過一段路徑後,又回到原先點。在經典力學裏,克卜勒問題時常被用來發展新的表述方法,像拉格朗日力學,哈密頓力學,哈密頓-亞可比方程式,與作用量-角度坐標。在克卜勒問題裏,拉普拉斯-龍格-冷次向量是一個運動常數。克卜勒問題的解答使科學家能夠用經典力學完全地解釋清楚行星運動。這行星運動的科學解釋在啟蒙時代的開啟扮演了重要的角色。.

新!!: 連心力和克卜勒問題 · 查看更多 »

勒壤得轉換

勒壤得轉換(Legendre transformation)是一個在數學和物理中常見的技巧,得名於阿德里安-馬裡·勒壤得(Arien-Marie Legendre)。该操作是一个实变量的实值凸函数的对合变换。 它经常用于经典力学中,从拉格朗日形式导出哈密顿形式;以及在热力学中,推导出热力学势,并求解多个变量的微分方程。.

新!!: 連心力和勒壤得轉換 · 查看更多 »

磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.

新!!: 連心力和磁 · 查看更多 »

純量勢

純量勢或稱純量位,在向量分析與物理學中是一個基本概念(形容詞「純量」常被省略,只要不會與向量勢發生混淆)。給定一向量場F,其純量勢V為一純量場;對此純量場取負值梯度則得到F: 相反過來,給定一函數V,這個式子定義了一個向量場F,其純量勢為V。純量勢也常常標記為希臘字母Φ,比如在電動力學的場合。 純量勢的物理意義和場的類型有關。對一流體或氣體流的向量場,定義純量勢暗示了任一點的流向與該點純量勢的最陡降方向相同,而對於力場,在一點的加速度也是一樣的情況。力場的純量勢跟力場的勢能(或稱位能)密切相關。 不是每個向量場都有一純量勢;有純量勢的向量場稱作是保守向量場,相應於物理學中保守力的稱呼。在各種速度場中,任何的層狀場(lamellar field)皆有一純量勢,而一螺線向量場可有純量勢的情況只發生在拉普拉斯場(Laplacian field)。 C C Category:场论 fr:Champ de vecteurs#Champ de gradient.

新!!: 連心力和純量勢 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 連心力和物理学 · 查看更多 »

牛顿万有引力定律

万有引力定律(Newton's law of universal gravitation)指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。 万有引力定律是由艾薩克·牛頓(Isaac Newton)稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。 此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什(Henry Cavendish)於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。 牛頓的引力定律類似於庫侖電力定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是逆平方律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。 牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。.

新!!: 連心力和牛顿万有引力定律 · 查看更多 »

相空間

在數學與物理學中,相空間是一個用以表示出一系統所有可能狀態的空間;系統每個可能的狀態都有一相對應的相空間的點。.

新!!: 連心力和相空間 · 查看更多 »

靜電學

電學是研究「靜止電荷」的特性及規律的一門學科,電學的領域之一。靜電即電荷在靜止時的狀態,沒有電荷流動。而靜止電荷所建立的電場稱為靜電場,是指不隨時間變化的電場,該靜電場對於場中的電荷有作用力。.

新!!: 連心力和靜電學 · 查看更多 »

角动量

在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.

新!!: 連心力和角动量 · 查看更多 »

极坐标系

在数学中,极坐标系(Polar coordinate system)是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。.

新!!: 連心力和极坐标系 · 查看更多 »

梯度

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点的梯度指向在這點标量场增长最快的方向(當然要比較的話必須固定方向的長度),梯度的絕對值是長度為1的方向中函數最大的增加率,也就是說 |\nabla f|.

新!!: 連心力和梯度 · 查看更多 »

洛伦兹力

在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.

新!!: 連心力和洛伦兹力 · 查看更多 »

旋度

旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.

新!!: 連心力和旋度 · 查看更多 »

拉格朗日量

在分析力學裏,一个动力系统的拉格朗日量(Lagrangian),又稱為拉格朗日函數,是描述整个物理系统的动力状态的函数,對於一般經典物理系統,通常定義為動能減去勢能,以方程式表示為 其中,\mathcal為拉格朗日量,T為動能,V為勢能。 在分析力学裡,假設已知一个系统的拉格朗日量,则可以将拉格朗日量直接代入拉格朗日方程式,稍加运算,即可求得此系统的运动方程式。 拉格朗日量是因數學家和天文學家約瑟夫·拉格朗日而命名。.

新!!: 連心力和拉格朗日量 · 查看更多 »

拉格朗日方程式

拉格朗日方程式(Lagrange equation),因數學物理學家约瑟夫·拉格朗日而命名,是分析力學的重要方程式,可以用來描述物體的運動,特別適用於理論物理的研究。拉格朗日方程式的功能相等於牛頓力學中的牛頓第二定律。.

新!!: 連心力和拉格朗日方程式 · 查看更多 »

重定向到这里:

有心力连心力連心勢

传出传入
嘿!我们在Facebook上吧! »