徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

路易·德布罗意

指数 路易·德布罗意

路易·维克多·德布罗意,第七代布罗意公爵(Louis Victor de Broglie, prince, puis duc de Broglie,),简称路易·德布罗意(Louis de Broglie),法國物理學家,法國外交和政治世家布羅意公爵家族的後代。从1928年到1962年在索邦大學擔任理論物理學教授,1929年因發現了電子的波動性,以及他對量子理論的研究而獲諾貝爾物理學獎。1952年獲聯合國教科文組織頒發的。 於1944年,德布羅意膺選為法蘭西學術院第一席位的院士,是第十六位得到此殊榮的人士。他也是法國科學院的永久秘書。.

70 关系: 埃尔温·薛定谔導航波導航波理論尼古拉·卡诺巴黎不变质量不确定性原理中微子布罗伊公爵布拉格定律二元論作用量德布罗意-玻姆理论德国保罗·狄拉克保羅·朗之萬哈密頓原理光子光电效应皮埃爾·德·費馬皮埃爾·莫佩爾蒂皇家学会矛盾玻尔模型現實第一次世界大战第二次世界大战納粹索爾威會議索邦大學繞射热力学电子物理学家物質波相对论聯合國教科文組織聯合國教育、科學及文化組織顫動馬克士威方程組马克斯·玻恩马克斯·普朗克马克斯·普朗克奖章诺贝尔物理学奖費馬原理路德维希·玻尔兹曼迪耶普阿尔伯特·爱因斯坦...薛定谔方程量子力学艾菲爾鐵塔雷斯特·革末速度X射线波函数波動力學波粒二象性波长法國榮譽軍團勳章法国最小作用量原理戴維森-革末實驗戴维·玻姆戈特弗里德·莱布尼茨流体力学普朗克常数晶体 扩展索引 (20 更多) »

埃尔温·薛定谔

埃尔温·魯道夫·尤則夫·亞歷山大·薛定諤(Erwin Rudolf Josef Alexander Schrödinger,),生于奥地利维也纳,是奥地利一位理论物理学家,量子力学的奠基人之一。1926年他提出薛定谔方程,为量子力学奠定了坚实的基础。他想出薛定谔猫思想實驗,试图证明量子力学在宏观条件下的不完备性。 1933年,因為“发现了在原子理论裏很有用的新形式”,薛定諤和英国物理学家保罗·狄拉克共同获得了诺贝尔物理学奖,以表彰他们发现了薛定谔方程和狄拉克方程。 他的父亲鲁道夫·薛定諤是生产油布和防水布的工厂主同时也是一名园艺家。他的母亲格鲁吉亚娜·艾米莉·布兰达是维也纳科技大学的教授亚历山大·鲍尔的女儿。.

新!!: 路易·德布罗意和埃尔温·薛定谔 · 查看更多 »

導航波

論物理學中,導航波理論(英文:pilot wave theory)是與量子力學相關的隱變量理論中的第一個例子,由德布罗意於1927年提出。 其更現代的版本為玻姆詮釋(Bohm interpretation),於1952年由玻姆提出。有別於傳統哥本哈根學派所採用機率波的詮釋,此一隱變量理論具有一定程度的爭議性,試圖將量子力學的實驗結果詮釋為一項決定性理論,以避免一些麻煩,如:瞬間的波函數塌縮以及薛丁格貓這樣的悖論。與其他量子力學詮釋使用相同數學式,因此相關量子力學實驗證據也可支持本理論。 2009年後,法國科學家等人利用矽油滴等流體進行實驗,製造出類比單粒子量子系統的效果,將導航波理論「實體化」。此實驗結果讓部份科學家對傳統上機率波詮釋產生一定的懷疑。.

新!!: 路易·德布罗意和導航波 · 查看更多 »

導航波理論

#重定向 導航波.

新!!: 路易·德布罗意和導航波理論 · 查看更多 »

尼古拉·卡诺

尼古拉·莱昂纳尔·萨迪·卡诺(Nicolas Léonard Sadi Carnot,),法国物理学家、工程师,常被形容為“熱力學之父”。尼古拉·卡诺在1824年6月12日发表了他唯一的出版著作《论火的动力》(《Reflections on the Motive Power of Fire》)。卡诺在这部著作中提出了卡诺热机和卡诺循环概念及“卡诺原理”(现在称为卡诺定理)。在卡诺的一生中,他的研究不曾引起外界关注。卡诺生前的好友罗贝林(Robelin)在法国《百科评论》杂志上曾经这样写道:“卡诺孤独地生活、凄凉地死去,他的著作无人阅读,无人承认。”不过後來他的理论被鲁道夫·克劳修斯和威廉·汤姆森重新陳述,是建立热力学第二定律的正式定義熵的概念的重要基础。《论火的动力》这部著作也成为热力学成为现代科学的标志。1832年,他染上了流行性霍乱,在同年8月24日被夺去了生命,病逝于巴黎,年仅36岁。.

新!!: 路易·德布罗意和尼古拉·卡诺 · 查看更多 »

巴黎

巴黎(Paris)是法國的首都及最大都市,同時是法蘭西島大區首府,為法國的政治與文化中心,隸屬法蘭西島大區之下的巴黎省(編號第75省;僅轄有1個同名市鎮)。目前的巴黎市轄區範圍大致為舊巴黎城牆內(環城大道內側),依照發展歷史共分成20個區,自從1860年代開始就沒有重大變化。截至2011年為止,巴黎市内人口超過225萬,的人口則逾1,229萬,是歐洲最大的都會區之一。 巴黎在近1,000年的時間内是西方最大的城市,也曾經是世界上最大的城市(16世紀至19世紀期间)。目前是世界上最重要的政治和文化中心之一,在教育、娛樂、時尚、科學、媒體、藝術、金融、政治等方面皆有重大影響力,被認為是世界上最重要的国际大都会之一.

新!!: 路易·德布罗意和巴黎 · 查看更多 »

不变质量

不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛仑兹不变量。当这个系统作为整体保持静止时,不变质量等于系统的总能量除以光速的平方,这也等于这个系统在一个与之相对静止的秤上称得的质量。如果系统由一个单一粒子组成,不变质量也称作这个粒子的静止质量。 由于一个孤立系统的质心总保持匀速直线运动,因此观察者总可以选择这样一个参考系,使系统在这一参考系中的总动量为零,即相对这个参考系为静止。这样的参考系称作质心系,这时系统的不变质量就等于系统的总能量除以光速的平方。这个於质心系下的总能量,可以被看作是系统在不同惯性系下可能被观测到所具有能量的“最小值”。 在多粒子系统的情形下,质心系中的粒子彼此之间可能会存在相对运动,并有可能存在一种或多种基本相互作用。这时粒子的动能和力场的势能会增大系统的总能量,使之大于所有粒子的静止质量之和,这部分能量也对系统的不变质量有贡献。.

新!!: 路易·德布罗意和不变质量 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 路易·德布罗意和不确定性原理 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 路易·德布罗意和中微子 · 查看更多 »

布罗伊公爵

布罗伊公爵(Duc de Broglie) 法國貴族,17世紀皮埃蒙特家族的後裔,法國許多著名的高階軍官、外交、政治人物均來自這個家族,如:法国元帅弗朗索瓦-马利·布罗伊公爵(1671~1745)、法國軍人和元帥維克托-弗朗索瓦·布羅伊公爵(1718~1814)、與反對勢力奮鬥的維克多·布羅伊公爵(1785~1870)、法國第三共和初期的總理阿尔貝特·布羅伊公爵(1821~1901)。著名的物理學家路易-維克多布羅伊公爵亦屬這個家族。.

新!!: 路易·德布罗意和布罗伊公爵 · 查看更多 »

布拉格定律

在物理學中,布拉格定律給出晶格的相干及不相干散射角度。當X射線入射於原子時,跟任何電磁波一樣,它們會使電子雲移動。電荷的運動把波動以同樣的頻率再發射出去(會因其他各種效應而變得有點模糊);這種現象叫瑞利散射(或彈性散射)。散射出來的波可以再相互散射,但這種進級散射在這裏是可以忽略的。當中子波與原子核或不成對電子的相干自旋進行相互作用時,會發生一種與上述電磁波相近的過程。這些被重新發射出來的波來相互干涉,可能是相長的,也可能是相消的(重疊的波某程度上會加起來產生更強的波峰,或相互消抵),在探測器或底片上產生繞射圖樣。而所產生的波干涉圖樣就是繞射分析的基本部份。這種解析叫布拉格繞射。 布拉格繞射(又稱X射線繞射的布拉格形式),最早由威廉·勞倫斯·布拉格及威廉·亨利·布拉格於1913年提出,他們早前發現了固體在反射X射線後產生的晶體線(與其他物態不同,例如液體),而這項定律正好解釋了這樣一種效應。他們發現,這些晶體在特定的波長及入射角時,反射出來的輻射會形成集中的波峰(叫布拉格尖峰)。布拉格繞射這個概念同樣適用於中子繞射及電子繞射 。中子及X射線的波長都於原子間距離(~150 pm)相若,因此它們很適合在這種長度作“探針”之用。 威廉·勞倫斯·布拉格使用了一個模型來解釋這個結果,模型中晶體為一組各自分離的平行平面,相鄰平面間的距離皆為一常數d。他的解釋是,如果各平面反射出來的X射線成相長干涉的話,那麼入射的X射線經晶體反射後會產生布拉格尖峰。當相位差為2π及其倍數時,干涉為相長的;這個條件可經由布拉格定律表示: 其中n為整數,λ為入射波的波長,d為原子晶格內的平面間距,而θ則為入射波與散射平面間的夾角。注意移動中的粒子,包括電子、質子和中子,都有對應其速度及質量的德布羅意波長。 布拉格定律由物理學家威廉·勞倫斯·布拉格爵士於1912年推導出來,並於1912年11月11日首度於劍橋哲學會中發表。儘管很簡單,布拉格定律確立了粒子在原子大小下的存在,同時亦為晶體研究了提供了有效的新工具──X射線及中子繞射。威廉·勞倫斯·布拉格及其父,威廉·亨利·布拉格爵士獲授1915年諾貝爾物理學獎,原因為晶體結構測定的研究,他們測定了氯化鈉、硫化鋅及鑽石的結構。 他們是唯一一隊同時獲獎的父子隊伍,而威廉·勞倫斯·布拉格時年25歲,因此成了最年輕的諾貝爾獎得主。.

新!!: 路易·德布罗意和布拉格定律 · 查看更多 »

二元論

二元論(dualism)是一种本體論观点。与一元论不同,二元论认为世界由两种不可缺少且相互独立的元素组成(一元论认为世界的本原是唯一的)。哲学上所说的二元论一般指认为世界的本质是物质和意识两个实体的观点。 二元论者认为其理论不偏向于唯物主义和唯心主义中的的任何一个派别。一些唯物主义者认为二元论的实质是客观唯心主义。.

新!!: 路易·德布罗意和二元論 · 查看更多 »

作用量

在物理學裏,作用量(英语:action)是一個很特別、很抽象的物理量。它表示著一個動力物理系統內在的演化趨向。雖然與微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的平穩值,就可以得到系統在兩個點之間每個點的狀態。.

新!!: 路易·德布罗意和作用量 · 查看更多 »

德布罗意-玻姆理论

一般认为,德布罗意-玻姆理论是一种量子力学诠释。亦称因果性诠释(Causal Interpretation)、存在性诠释(Ontological Interpretation)、玻姆诠释、玻姆力学(Bohmian Mechanics),有时也不严格地与导航波理论(Pilot-Wave Theory)混同。需注意,该理论有多种未规范的命名并存。因使用者和语境的不同,命名指代的理论范围和强调的理论重点可能存在差异,或者命名可能指代该理论体系的不同发展阶段,虽然它们所指代的内容通常是相关联的。 德布罗意-玻姆理论是由路易·德布罗意初创,戴维·玻姆重新发现并与巴席·海利(Basil Hiley)等合作者做进一步扩展而成的理论。此理论在历史上曾因遭受强烈反对和广泛冷遇而两度沉寂(1920s-1950s, 1950s-1970s)。和当时的物理学界的主流态度成鲜明对比,約翰·貝爾是当时该理论的少数积极声援者之一。 德布罗意-玻姆理论是一种非局域的决定性的隐变量理论。在该理论中,微观粒子可以有确定的位置和动量,因此可以用明确的轨线(trajectory)描述其运动,但对于粒子位置和速度的测量,依然必须遵守不确定性原理。粒子接受波函数的引导,通过与量子势(Quantum potential)的交互作用,表现出非局域的整体性。波函数根据薛定谔波动方程演化,从不坍缩。该理论可以完全重现与传统统计性量子力学的相同的实验结果。.

新!!: 路易·德布罗意和德布罗意-玻姆理论 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 路易·德布罗意和德国 · 查看更多 »

保罗·狄拉克

保羅·埃德里安·莫里斯·狄拉克,OM,FRS(Paul Adrien Maurice Dirac,),英国理論物理學家,量子力學的奠基者之一,曾經主持劍橋大學的盧卡斯數學教授席位,並在佛羅里達州立大學度過他人生的最後十四個年頭。 狄拉克在物理學上有諸多開創性的貢獻。他統合了維爾納·海森堡的矩陣力學和埃爾溫·薛定谔的波動力學,發展出了量子力學的基本數學架構。他給出的狄拉克方程式可以描述费米子的物理行為,解釋了粒子的自旋,並且首先預測了反粒子的存在。而他在路徑積分和二次量子化也扮演了的先驅者的角色,為後來量子電動力學的發展奠定了重要的基礎。此外,他將拓扑的概念引入物理學,提出了磁單極的理論。 1933年,因為“發現了在原子理論裡很有用的新形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程),狄拉克和薛丁格共同获得了诺贝尔物理学奖,是當時史上最年輕獲獎的理論物理學家。.

新!!: 路易·德布罗意和保罗·狄拉克 · 查看更多 »

保羅·朗之萬

保羅·朗之萬(Paul Langevin,),法國物理學家,主要貢獻有朗之萬動力學及朗之萬方程。.

新!!: 路易·德布罗意和保羅·朗之萬 · 查看更多 »

哈密頓原理

在物理學裏,哈密頓原理(Hamilton's principle)是愛爾蘭物理學家威廉·哈密頓於1833年發表的關於平穩作用量原理的表述。哈密頓原理闡明,一個物理系統的拉格朗日函數,所構成的泛函的變分問題解答,可以表達這物理系統的動力行為。拉格朗日函數又稱為拉格朗日量,包含了這物理系統所有的物理內涵。這泛函稱為作用量。哈密頓原理提供了一種新的方法來表述物理系統的運動。不同於牛頓運動定律的微分方程式方法,這方法以積分方程式來設定系統的作用量,在作用量平穩的要求下,使用變分法來計算整個系統的運動方程式。 雖然哈密頓原理本來是用來表述經典力學,這原理也可以應用於經典場,像電磁場或重力場,甚至可以延伸至量子場論等等。.

新!!: 路易·德布罗意和哈密頓原理 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

新!!: 路易·德布罗意和光 · 查看更多 »

光子

| mean_lifetime.

新!!: 路易·德布罗意和光子 · 查看更多 »

光电效应

光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.

新!!: 路易·德布罗意和光电效应 · 查看更多 »

皮埃爾·德·費馬

埃爾·德·費馬(姓氏依發音亦作費爾瑪。Pierre de Fermat,,法語發音),法國律師、業餘數學家(也被称为数学大师、业余数学家之王)。他在數學上的成就不低于職業數學家,似乎對數論最有興趣,亦對現代微積分的建立有所貢獻。.

新!!: 路易·德布罗意和皮埃爾·德·費馬 · 查看更多 »

皮埃爾·莫佩爾蒂

埃爾·路易·莫佩爾蒂(Pierre Louis Moreau de Maupertuis,)是一位法國數學家、物理學家、哲學家。他是最先确定地球形狀為近扁球形的科學家。他也擁有首先提出最小作用量原理之榮譽。.

新!!: 路易·德布罗意和皮埃爾·莫佩爾蒂 · 查看更多 »

皇家学会

倫敦皇家自然知識促進學會的會長、理事会及追隨者們(The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge),簡稱皇家学会(Royal Society),是英国资助科学发展的组织,成立于1660年,并于1662年、1663年、1669年领到皇家的各种特許狀。学会宗旨是促进自然科学的发展,它是世界上历史最长而又从未中断过的科学学会,在英国起着国家科学院的作用。英國君主是学会的保护人。.

新!!: 路易·德布罗意和皇家学会 · 查看更多 »

矛盾

粗略的说,矛盾(Contradiction)是在两个或更多陈述、想法或行动之间的不一致,存在差别。 汉语辞源出自《韩非子》中《难一》所述故事: 白話文大意為:有一位賣盾牌和賣矛的楚國人,他誇讚自己賣的盾牌說:“我的盾牌堅固無比,什麼東西都無法刺穿它。”又誇讚自己賣的矛說:“我的矛鋒利無比,什麼東西都可以刺穿。”有人問他說:“用你的矛来試著刺你的盾,將會如何?”那人一句話都無法回答。不能被刺穿的盾牌和能刺穿一切的矛,是不可以同时存在的。 注意在口语和辩证法中,矛盾有着同形式逻辑中完全不同的意义,口语中的矛盾强调矛盾双方的斗争性。.

新!!: 路易·德布罗意和矛盾 · 查看更多 »

玻尔模型

玻尔模型是丹麦物理学家尼尔斯·玻尔于1913年提出的关于氢原子结构的模型。玻尔模型引入量子化的概念,使用经典力学研究原子内电子的运动,合理地解释了氢原子光谱和元素周期表,取得了巨大的成功。玻尔模型是20世纪初期物理学取得的重要成就,对原子物理学产生了深远的影响。.

新!!: 路易·德布罗意和玻尔模型 · 查看更多 »

現實

实(Reality)在日常应用时意味着“客观存在的事物”或“合于客观情况的条件”。广义的讲,“现实”包括所有可以观察到或能理解的事物,所以既包括存在、也包括虚无。 狭义的“现实”在哲学上有不同的概念层次,包括现象、事实、真实及公理等。 现实也締造順利,順利亦締造完整。.

新!!: 路易·德布罗意和現實 · 查看更多 »

第一次世界大战

一次世界大戰(簡稱一次大戰、一戰,或稱歐戰;World War I、WWI、Great War、First World War;la première Guerre Mondiale、la Grande Guerre)是一場於1914年7月28日至1918年11月11日主要發生在歐洲的大戰,然而戰火最終延燒至全球,當時世界上大多數國家都被捲入這場戰爭,史稱「第一次世界大戰」。1939年第二次世界大战爆发前,这场战争被直接称为世界大战。由于主要戰場於歐洲大陸,故此20世紀早期的中文經常稱之為“欧战”。 戰爭過程主要是同盟國和協約國之間的戰鬥。德國、奥匈帝国、鄂圖曼帝国及保加利亚屬於同盟國陣營。英國、法國、日本、俄國、意大利、美国、塞尔维亚、比利时、中國等則屬於協約國陣營。戰爭的導火線是發生於1914年6月的塞拉耶佛事件,奥匈帝国皇储斐迪南及其妻子索菲亚被塞尔维亚激进青年普林西普刺杀身亡。戰線主要分為東線(俄國對德奧作戰)、西線(英法對德作戰)和南線(包括塞爾維亞對奧匈、保加利亚作戰的巴爾幹戰線,奥斯曼土耳其对俄国的高加索战线,奥斯曼土耳其对英国的美索不达米亚战线、奥斯曼土耳其对英国、阿拉伯的巴勒斯坦战线等等),其中以西線最为慘烈。這場戰爭是歐洲歷史上破壞性最强的戰爭之一,約6,500萬人參戰,約2,000萬人受傷,超过1,600萬人喪生(约900万士兵和700万平民),造成嚴重的人口及經濟損失,估計損失约1,700億美元(當時幣值),除美洲與亞洲外,歐洲各國均受到重創,特別是戰敗國如德國等等還要面對巨額賠款,埋下第二次大戰的種子。.

新!!: 路易·德布罗意和第一次世界大战 · 查看更多 »

第二次世界大战

二次世界大戰(又常簡稱二次大戰、二戰、WWII等;World War II;Seconde Guerre mondiale;Zweiter Weltkrieg;Вторая мировая война;第二次世界大戰)是一次自1939年至1945年所爆發的全球性軍事衝突,整場戰爭涉及到全球絕大多數的國家,包括所有的大國,并最終分成了兩個彼此對立的軍事同盟─同盟國和軸心國。這次戰爭是人類歷史上最大規模的戰爭,動員了1億多名軍人參與這次軍事衝突。主要的參戰國紛紛宣布進入總體戰狀態,幾乎將自身國家的全部經濟、工業和科學技術應用於戰爭之上,同時也將民用與軍用的資源合併以方便統籌規劃。包括有猶太人大屠殺、南京大屠殺、戰爭中日軍對中國軍民進行細菌戰、以及最终美國對日本首次使用原子彈等事件,使得第二次世界大戰也是自有紀錄以來涉及最多大規模民眾死亡案例的軍事衝突,全部總計便將近有5,000萬至7,000萬人因而死亡,這也讓第二次世界大戰成了人類歷史上死亡人數最多的戰爭。 儘管早在1931年9月,日本便侵佔了中國的滿洲,而後建立了傀儡國家滿洲國。至1937年7月盧溝橋事變後中日更爆發了全面戰爭。不過大多數人仍多把第二次世界大戰的爆發定為1939年9月1日德國入侵波蘭開始,這次入侵行動隨即導致英國與法國向德國宣戰。然而德國在入侵波蘭後開始著手嘗試在歐洲建立一個大帝國,自1939年末期到1941年初期為止,發動一連串戰爭並藉由條約的簽署使得德國幾乎佔領了歐洲絕大部分的地區,而名義上保持中立的蘇聯在和德國簽訂《德蘇互不侵犯條約》後,也跟進侵略潮流,陸續佔領或者吞併了其在歐洲邊界的鄰近6個國家,在這之中也包括第二次世界大戰爆發時所佔領的波蘭領土。英國以及大英國協的成員國則堅持持續與軸心國繼續作戰,並分別在北非和大西洋海上發生多次軍事衝突,而這也使得英國成了歐洲地區少數仍能繼續反抗德軍入侵的主要武力之一。1941年6月,歐洲的軸心國集團決定撕毀與蘇聯的合作約定,聯合入侵蘇聯領土,這次攻勢也開始了人類歷史上規模最大的地面戰爭爆發,但也在之後讓原本幾乎統轄整個歐洲地區的軸心國被迫投入大量軍力來維持作戰優勢。到了1941年12月,已經加入軸心國的大日本帝國為了能夠在亞洲及太平洋地區獲得領導地位,陸續襲擊位于太平洋的美國統轄地區和座落於與中南半島的歐洲殖民地,很快地於西太平洋和東亞戰區獲得了主導權。 到了1942年時日本開始在一系列的海戰中戰敗,位於歐洲的軸心國也陸續於北非戰役以及斯大林格勒戰役中節節敗退,這些都迫使軸心國停下進攻的腳步。1943年時,義大利法西斯政權在西西里島戰役中面對同盟國部隊嚴重失利,另一方面德軍在库尔斯克会战戰敗後失去對於東歐的領導地位,同時美國也在太平洋戰區中獲得了一連串的勝利,自此軸心國集團逐漸失去主導權並開始嘗試將佈署於各地的前線部隊進行戰略性的撤退。到了1944年時,盟軍決定登陸法國以開闢第二戰場,而蘇聯除了成功收復過去被佔領的領土外,也開始轉往進攻德國與其同盟國家的土地。在蘇聯和波蘭部隊共同攻入柏林後,第二次世界大戰歐洲戰區最終在1945年5月8日德國投降的情況下宣告結束。而另一方面美國在1944年和1945年成功擊敗了日本海軍部隊並陸續佔領了數個重要的西太平洋島嶼,這使得日本列島隨時面臨同盟國部隊入侵的危機。最後在美軍分別於廣島市和長崎市投下原子彈並造成大量日本平民死亡。1945年8月8日蘇聯進攻日本控制下的中國東北地區,8月14日日本跟進宣佈願意接受無條件投降的條件,而隨著亞洲戰事的停息也意味著第二次世界大戰正式結束。 1945年時第二次世界大戰以同盟國勝利宣告結束,然而二次大戰對世界影響極為深遠,改變了往後世界的政治版圖和社會結構,特別是戰敗的軸心國集團被迫接受同盟國的安排。1945年10月24日聯合國亦宣告成立,期望能夠促進各國合作並防止未來的軍事衝突;同時戰勝的盟軍各國,也紛紛在聯合國各個機構中擔任重要職位,特別是以美國、蘇聯、中國、英國和法國5個國家為首成立聯合國聯合國安全理事會的常任理事國,主導著世界的秩序.

新!!: 路易·德布罗意和第二次世界大战 · 查看更多 »

納粹

-- 納粹可泛指下列有關條目:.

新!!: 路易·德布罗意和納粹 · 查看更多 »

索爾威會議

#重定向 索尔维会议.

新!!: 路易·德布罗意和索爾威會議 · 查看更多 »

索邦大學

#重定向 索邦大学.

新!!: 路易·德布罗意和索邦大學 · 查看更多 »

繞射

#重定向 衍射.

新!!: 路易·德布罗意和繞射 · 查看更多 »

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J. (1876).

新!!: 路易·德布罗意和热力学 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 路易·德布罗意和电子 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

新!!: 路易·德布罗意和熵 · 查看更多 »

物理学家

物理學家是指受物理學訓練、並以探索物質世界的組成和運行規律(即物理學)為目的科學家。研究範疇可細至構成一般物質的微細粒子,大至宇宙的整體,不同的範圍都會有相對的專家。對應於物理學分為理論物理學和實驗物理學,物理学家也可以分為理論物理學家和實驗物理學家。物理學中理論和實驗都是必不可缺的组成部分,所以有时候這樣的分類很難界定,只不過在一個物理學家更偏重理論的情况下,被稱為理論物理學家的例子包括爱因斯坦、海森堡、狄拉克、埃爾溫·薛丁格、尼爾斯·波耳、楊振寧等;而若偏重實驗,則稱為實驗物理學家,例如艾薩克·牛頓、法拉第、亨利·貝克勒、尼古拉·特斯拉、馬克斯·馮·勞厄、約瑟夫·湯姆森、歐內斯特·勞倫斯、吳健雄、威廉·肖克利、朱棣文等。.

新!!: 路易·德布罗意和物理学家 · 查看更多 »

物質波

物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.

新!!: 路易·德布罗意和物質波 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

新!!: 路易·德布罗意和相对论 · 查看更多 »

聯合國教科文組織

#重定向 联合国教育、科学及文化组织.

新!!: 路易·德布罗意和聯合國教科文組織 · 查看更多 »

聯合國教育、科學及文化組織

#重定向 联合国教育、科学及文化组织.

新!!: 路易·德布罗意和聯合國教育、科學及文化組織 · 查看更多 »

顫動

顫動(德語:Zitterbewegung;英語:jitter/oscillatory movement)是一種理論上螺旋的或圓形的基本粒子運動,尤其是電子,因而產生了它們所具有的自旋與磁矩。如此運動的存在是由埃爾温·薛丁格於1930年首次提出,這是出於他對自由空間中相對論性電子的狄拉克方程式波包解的分析結果,其中正與負的能態間的干涉產生了看起來是以光速繞著中央的位置變動,其角頻率為2 m c^2 / \hbar \,\!或用頻率表示為大約1.6赫茲。 自由的相對論性粒子的顫動迄今未被觀察到。 Krekora等人的研究成果,基於二次量子化量子理論(適合描述多粒子量子動力學的理論)顯示出:「量子場論禁止一顆電子顫動現象的出現。」Krekora等人亦將他們量子場論的數值模擬用在描述另一個具有爭議性(且某種程度相關)的現象,稱作克萊因悖論。 雖然尚未被證實存在,但是對顫動已進行過兩次模擬。第一次,是使用一個被俘获的离子,将之置于一个使该离子的非相对论性薛丁格方程具有和狄拉克方程同样的数学形式(虽然物理条件不同)之环境中。第二次,在2013年,使用一个玻色-爱因斯坦凝聚装置。.

新!!: 路易·德布罗意和顫動 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 路易·德布罗意和馬克士威方程組 · 查看更多 »

马克斯·玻恩

克斯·玻恩(Max Born,),德国物理学家与数学家,对量子力学的发展非常重要,同时在固体物理学及光学方面也有所建树。此外,他在20世纪20年代至30年代间培养了大量知名物理学家。1954年,玻恩因“量子力学方面的基础性研究,特别是给出波函数的统计解释”而获得诺贝尔物理学奖。.

新!!: 路易·德布罗意和马克斯·玻恩 · 查看更多 »

马克斯·普朗克

克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.

新!!: 路易·德布罗意和马克斯·普朗克 · 查看更多 »

马克斯·普朗克奖章

克斯·普朗克奖章(德语:Max-Planck-Medaille)是1929年起每年由德国物理学会颁发给理论物理学领域杰出贡献的奖项,是德国最重要的物理学奖项之一,获奖者被授予证书和一枚马克斯·普朗克肖像的金质奖章。.

新!!: 路易·德布罗意和马克斯·普朗克奖章 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 路易·德布罗意和诺贝尔物理学奖 · 查看更多 »

費馬原理

費馬原理(Fermat principle)最早由法国科学家皮埃爾·德·費馬在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。 最初提出时,又名「最短時間原理」:光線傳播的路徑是需時最少的路徑。 費馬原理更正確的稱謂應是「平穩時間原理」:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。 費馬原理是几何光学的基本定理。用微分或变分法可以从費馬原理导出以下三个几何光学定律:.

新!!: 路易·德布罗意和費馬原理 · 查看更多 »

路德维希·玻尔兹曼

路德维希·爱德华·玻尔兹曼(Ludwig Eduard Boltzmann ,)是一位奥地利物理学家和哲学家。作为一名物理学家,他最伟大的功绩是发展了通过原子的性质(例如,原子量,电荷量,结构等等)来解释和预测物质的物理性质(例如,粘性,热传导,扩散等等)的统计力学,并且从统计概念出發,完美地阐释了热力学第二定律。.

新!!: 路易·德布罗意和路德维希·玻尔兹曼 · 查看更多 »

迪耶普

迪耶普(Dieppe)是法國的一座城市,濱臨英吉利海峽的港口都市,屬上諾曼地大區濱海塞納省。.

新!!: 路易·德布罗意和迪耶普 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 路易·德布罗意和阿尔伯特·爱因斯坦 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 路易·德布罗意和薛定谔方程 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 路易·德布罗意和量子力学 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

新!!: 路易·德布罗意和镍 · 查看更多 »

艾菲爾鐵塔

艾菲爾鐵塔(La Tour Eiffel,也常稱為--)是位于法國巴黎第七区、塞纳河畔戰神廣場的鐵製,世界著名建筑,也是法国之一,巴黎城市地标之一,巴黎最高建筑物。正式地址为Rue Anatole-France 5号。 埃菲尔铁塔建成于1889年,初名为“三百米塔”,后得名自其设计师居斯塔夫·埃菲尔。铁塔是世界建筑史上的技术杰作,也是世界上最多人付費參觀的名勝古跡,2011年約有698萬人參觀,是法国参观人数第二多的文化景点。迄今为止,累計參觀人數已超過三亿人。 1991年,艾菲爾鐵塔連同巴黎塞納河沿岸整座被列入世界遺產。 埃菲尔铁塔以312米的高度,占据世界最高人造建筑的位置长达四十年。其位于279.11米处的观景平台是欧盟范围内公众能够抵达的最高的观景台,在全欧洲范围内仅次于莫斯科的奥斯坦金诺电视塔。铁塔的总高度曾通过安装天线而多次提高。这些天线曾被用于许多科学实验,现在主要用于发射广播电视信号。.

新!!: 路易·德布罗意和艾菲爾鐵塔 · 查看更多 »

雷斯特·革末

雷斯特·革末(Lester Germer ,),是一位美國物理學家。他與柯林頓·戴維森,在戴維森-革末實驗裏,共同合作證明了物質的波粒二象性。這實驗更證實了量子力學的正確性,使得那時剛創立的量子力學,獲得了物理學家的廣泛接受。後來,因為這重大的貢獻,戴維森和喬治·湯姆森一起榮獲 1937 年諾貝爾物理學獎。戴維森-革末實驗也為電子顯微鏡的發展奠定了基礎。革末在熱離子學 (thermionics) 、金屬沖蝕 (metal erosion) 、接觸力學等等學術領域,都有很大的貢獻。 在第一次世界大戰時期,革末曾經是一位戰鬥機駕駛員。戰後,他任職於紐澤西州的貝爾實驗室。 1945年, 49 歲革末開始了攀岩的副業生涯。在美國東北部很多地方,都有他的足跡。他特別喜歡在紐約州的 Shawangunk Ridge 攀岩。那時候,阿帕拉契登山俱樂部是那裏主要管理攀岩運動的組織。革末從來沒有參加阿帕拉契登山俱樂部的活動。不僅這樣,他還與俱樂部的安全委員會主席 Hans Claus 發生劇烈的衝突。有一陣子,革末的攀登證照居然被撤銷,理由是「過度友善,過度熱心」。大家都知道,革末樂意善捐,廣交朋友,綽號為「一人攀岩班」。 於 1971 年,在他的 75 歲生日的前一星期,當他又在先鋒攀登 Shawangunk Ridge (眉毛點,5.6 等級)的時候,不幸因心肌梗死而往生。直到那時刻,革末擁有二十六年完美的安全紀錄;他從來沒有過一次先鋒跌落 (leader fall) 的紀錄。.

新!!: 路易·德布罗意和雷斯特·革末 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

新!!: 路易·德布罗意和速度 · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

新!!: 路易·德布罗意和X射线 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: 路易·德布罗意和波函数 · 查看更多 »

波動力學

波動力學是量子力學的一種表述形式,主要是以波函數及其模數的平方去表示物體的狀態及該狀態出現的機率。對於波函數隨時間的變化,是遵從薛丁格方程式。.

新!!: 路易·德布罗意和波動力學 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 路易·德布罗意和波粒二象性 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

新!!: 路易·德布罗意和波长 · 查看更多 »

法國榮譽軍團勳章

法國榮譽軍團勳章(Légion d'honneur,英文譯作 Legion of Honour,又譯為法國榮譽勳位勳章),全名為法國國家榮譽軍團勳位(Ordre national de la Légion d'honneur),是法國政府頒授的最高榮譽勳位勳章,以表彰對法國做出特殊貢獻的軍人和其他各界人士。1802年由拿破崙設立,勳章绶带為紅色,分六個等級。.

新!!: 路易·德布罗意和法國榮譽軍團勳章 · 查看更多 »

法国

法兰西共和国(République française ),簡稱法国(France ),是本土位於西歐並具有海外大區及領地的主權國家,自法蘭西第五共和國建立以來实行单一制與半总统制,首都為歐盟最大跟歐洲最大的文化與金融中心巴黎。該國本土由地中海一直延伸至英倫海峽及北海,並由萊茵河一直延伸至大西洋,整體呈六角狀。海外领土包括南美洲的法属圭亚那及分布于大西洋、太平洋和印度洋的诸岛屿。全国共分为18个大区,其中5个位于海外。法国與西班牙及摩洛哥為同時擁有地中海及大西洋海岸線的三個國家。法國的国土面积全球第四十一位,但卻為歐盟及西歐國土面積最遼闊的國家,歐洲面積第三大國家。 今日之法国本土于铁器时代由高卢人(凯尔特人的一支)征服,前51年又由罗马帝国吞并。486年法兰克人(日耳曼人的一支)又征服此地,其于该地域建立的早期国家最终发展成为法兰西王国。法国至中世纪末期起成为欧洲大国,國力於19-20世紀時達致巔峰,建立了世界第二大殖民帝國,亦為20世紀人口最稠密的國家,現今則是众多前殖民地的首選移民国。在漫長的歷史中,法國培養了不少對人類發展影響深遠的著名哲學家、文學家與科學家,亦為文化大国,具有第四多的世界遺產。 法國在全球範圍內政治、外交、軍事與經濟上為舉足輕重的大國之一。法國自1958年建立第五共和国後經濟有了很大的發展,政局保持穩定,國家體制實行半總統制,國家經由普選產生的總統、由其委任的總理與相關內閣共同執政。1958年10月4日,由公投通過的國家憲法則保障了國民的民主權及宗教自由。法國的建國理念主要建基於在18世紀法國大革命中所制定的《人權和公民權宣言》,此乃人類史上較早的人權文檔,並對推動歐洲以至於全球的民主與自由產生莫大的影響;其藍白紅三色的國旗則有「革命」的含義。法國不僅為聯合國常任理事國,亦是歐盟始創國。該國國防預算金額為全球第5至6位,並擁有世界第三大核武貯備量。法國為发达国家,其GDP為全球第六大經濟體系,具備世界第十大購買力,並擁有全球第二大專屬經濟區;若以家庭總財富作計算,該國是歐洲最富有的國家,位列全球第四。法國國民享有高生活質素,在教育、預期壽命、民主自由、人類發展等各方面均有出色的表現,特別是醫療研發與應用水平長期盤據世界首位。其國內許多軍備外銷至世界各地。目前,法国是。.

新!!: 路易·德布罗意和法国 · 查看更多 »

最小作用量原理

物理學中 最小作用量原理(least action principle),或更精確地,平穩作用量原理(stationary action principle),是一種變分原理,當應用於一個機械系統的作用量時,可以得到此機械系統的運動方程式。這原理的研究引導出經典力學的拉格朗日表述和哈密頓表述的發展。卡爾·雅可比特稱最小作用量原理為分析力學之母。 在現代物理學裏,這原理非常重要,在相對論、量子力學、量子場論裏,都有廣泛的用途。在現代數學裏,這原理是莫爾斯理論的研究焦點。本篇文章主要是在闡述最小作用量原理的歷史發展。關於數學描述、推導和實用方法,請參閱條目作用量。最小作用量原理有很多種例子,主要的例子是莫佩爾蒂原理(Maupertuis' principle)和哈密頓原理。 在最小作用量原理之前,有很多類似的點子出現於測量學和光學。古埃及的拉繩測量者(rope stretcher)在測量兩點之間的距離時,會將固定於這兩點的繩索拉緊,這樣,可以使間隔距離減少至最低值。托勒密在他的著作《地理學指南》(Geographia)第一册第二章裏強調,測量者必須對於直線路線的誤差做出適當的修正。古希臘數學家歐幾里得在《反射光學》(Catoptrica)裏表明,將光線照射於鏡子,則光線的反射路徑的入射角等於反射角。稍後,亞歷山卓的希羅證明這路徑的長度是最短的。.

新!!: 路易·德布罗意和最小作用量原理 · 查看更多 »

戴維森-革末實驗

戴維森-革末實驗是柯林頓·戴維森與雷斯特·革末設計與研究成功的一個量子力學實驗。他們用低速電子入射於鎳晶體,取得電子的繞射圖案。發表於 1927 年,這實驗為德布羅意假說(所有物質都具有波的性質,即波粒二象性),提供了不可否定的證據。因此,戴維森獲得了諾貝爾物理學獎。在量子力學的發展史上,這實驗證實了其正確性,使得那時剛創立的量子力學,獲得了物理學家的廣泛接受。.

新!!: 路易·德布罗意和戴維森-革末實驗 · 查看更多 »

戴维·玻姆

戴维·玻姆(David Bohm,),英籍美国物理学家,对量子力学有突出的贡献,并曾参与曼哈顿工程。.

新!!: 路易·德布罗意和戴维·玻姆 · 查看更多 »

戈特弗里德·莱布尼茨

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.

新!!: 路易·德布罗意和戈特弗里德·莱布尼茨 · 查看更多 »

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

新!!: 路易·德布罗意和流体力学 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 路易·德布罗意和普朗克常数 · 查看更多 »

晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

新!!: 路易·德布罗意和晶体 · 查看更多 »

重定向到这里:

德布罗意,L.V.路易-維克多·德·布羅伊路易-維克多·德·布羅意路易-维克多·德·布罗伊路易-维克多·德·布罗意路易·德布罗伊路易·德布羅意路易·德布羅意公爵路易斯-维克多·德·布罗意路易斯·德布羅伊路易斯·德布羅意路易斯·维克托·德·德布罗意

传出传入
嘿!我们在Facebook上吧! »