徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

赫斯特指数

指数 赫斯特指数

赫斯特指数(Hurst exponent)以英国水文学家命名,起初被用来分析水库与河流之间的进出流量,后来被广泛用于各行各业的分形分析。利用Hurst参数可以表征网络流量的自相似性,Hurst参数越大,说明流量的自相似程度就越高,也就是说网络的业务流量在很长的时间内都具有长相关性,这主要是由于网络流量的突发性造成的。现有的文献给出的估计方法主要是两大类:时域法和频域法,其中时域法包括R/S分析法、时间方差图法、IDC法,频域法包括Whittle的最大似然估计、小波法等。常用的Hurst估值算法都有不同的适用条件,不能广泛的应用于各种情况,因为每一种算法在时域或者是频域的范围内应用了求和平均的方法,这样就会使得时间序列的高突发可变的细节信息丢失,从而导致出估算结果为负值,增大了估计误差。.

5 关系: 复数小波分析分形FFT最小二乘法

复数

#重定向 复数 (数学).

新!!: 赫斯特指数和复数 · 查看更多 »

小波分析

小波分析(wavelet analysis)或小波轉換(wavelet transform)是指用有限長或快速衰減的、稱為「母小波」(mother wavelet)的振盪波形來表示信號。該波形被縮放和平移以匹配輸入的信號。 「小波」(wavelet)一詞由Morlet和Grossman在1980年代早期提出。他們用的是法語詞ondelette,意思就是「小波」。後來在英語裡,「onde」被改為「wave」而成了wavelet。 小波變換分成兩個大類:離散小波變換(DWT) 和連續小波轉換(CWT)。兩者的主要區別在於,連續變換在所有可能的縮放和平移上操作,而離散變換採用所有縮放和平移值的特定子集。 小波理論和幾個其他課題相關。所有小波變換可以視為時域頻域表示的形式,所以和調和分析相關。所有實際有用的「離散小波變換」使用包含有限脈衝響應濾波器的濾波器段(filter band)。構成CWT的小波受海森堡的測不準原理制約,或者說,離散小波基可以在測不準原理的其他形式的情境中考慮。.

新!!: 赫斯特指数和小波分析 · 查看更多 »

分形

分形(Fractal),又稱--、殘形,通常被定義為「一個粗糙或零碎的幾何形狀,可以分成數個部分,且每一部分都(至少近似地)是整體縮小後的形狀」,即具有自相似的性質。 碎形思想的根源可以追溯到公元17世紀,而對碎形使用嚴格的數學處理則始於一個世紀後卡爾·魏爾施特拉斯、格奧爾格·康托爾和費利克斯·豪斯多夫對連續而不可微函數的研究。但是碎形(fractal)一詞直到1975年才由本華·曼德博創造出來,字源來自拉丁文 frāctus,有「零碎」、「破裂」之意。一個數學意義上碎形的生成是基於一個不斷迭代的方程式,即一種基於遞歸的反饋系統。碎形有幾種類型,可以分別依據表現出的精確自相似性、半自相似性和統計自相似性來定義。雖然碎形是一個數學構造,它們同樣可以在自然界中被找到,這使得它們被劃入藝術作品的範疇。碎形在醫學、土力學、地震学和技术分析中都有应用。.

新!!: 赫斯特指数和分形 · 查看更多 »

FFT

#重定向 快速傅里叶变换.

新!!: 赫斯特指数和FFT · 查看更多 »

最小二乘法

最小二乘法(又称--)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 “最小平方法”是對過度確定系統,即其中存在比未知數更多的方程組,以迴歸分析求得近似解的標準方法。在這整個解決方案中,最小平方法演算為每一方程式的結果中,將殘差平方和的總和最小化。 最重要的應用是在曲線擬合上。最小平方所涵義的最佳擬合,即殘差(殘差為:觀測值與模型提供的擬合值之間的差距)平方總和的最小化。當問題在自變量(x變量)有重大不確定性時,那麼使用簡易迴歸和最小平方法會發生問題;在這種情況下,須另外考慮變量-誤差-擬合模型所需的方法,而不是最小平方法。 最小平方問題分為兩種:線性或普通的最小平方法,和非線性的最小平方法,取決於在所有未知數中的殘差是否為線性。線性的最小平方問題發生在統計迴歸分析中;它有一個封閉形式的解決方案。非線性的問題通常經由迭代細緻化來解決;在每次迭代中,系統由線性近似,因此在這兩種情況下核心演算是相同的。 最小平方法所得出的多項式,即以擬合曲線的函數來描述自變量與預計應變量的變異數關係。 當觀測值來自指數族且滿足輕度條件時,最小平方估計和最大似然估计是相同的。最小平方法也能從動差法得出。 以下討論大多是以線性函數形式來表示,但對於更廣泛的函數族,最小平方法也是有效和實用的。此外,迭代地將局部的二次近似應用於或然性(藉由費雪信息),最小平方法可用於擬合廣義線性模型。 其它依據平方距離的目標加總函數作為逼近函數的主題,請參見最小平方法(函數近似)。 最小平方法通常歸功於高斯(Carl Friedrich Gauss,1795),但最小平方法是由阿德里安-马里·勒让德(Adrien-Marie Legendre)首先發表的。.

新!!: 赫斯特指数和最小二乘法 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »