徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

質子衰變

指数 質子衰變

質子衰變,在粒子物理學上,是一個假設的放射性衰變,這假設預言了質子在衰變的時候,會變成更輕的次原子粒子,通常是中性π介子和正電子。質子衰變從未被證實,至今仍沒有證據顯示質子衰變的可能。 在標準模型理論中,質子是重子的一種,理論上它是穩定的,因質子的重子數是大致守恆。即質子不會以微擾的形式衰變成其他粒子,因為質子已經是最輕的(因而也是最低能量的)重子。 (GUTs)明確地否定了重子數的對稱性,允許質子經由X玻色子而衰變。質子衰變是各式提議的 GUTs 中少數可觀察的一種。現時,所有試圖觀察這個衰變的實驗無一成功。.

42 关系: 原子核半衰期反中微子反物质史蒂芬·霍金吳忠超大爆炸大統一能量夸克契忍可夫輻射宇宙宇宙線實驗物理學不确定性原理中子希格斯玻色子弱相互作用強交互作用微擾理論 (量子力學)俄亥俄州土壤玻色子粒子物理學美國电子物质質子费米子费曼图超对称超對稱粒子超级神冈探测器輕子數重子重子数Π介子X及Y玻色子标准模型次原子粒子正電子日本放射性

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 質子衰變和原子核 · 查看更多 »

半衰期

半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.

新!!: 質子衰變和半衰期 · 查看更多 »

反中微子

物理学里,反中微子,中微子的反物质,是核反应β衰變产生出来的中性粒子.

新!!: 質子衰變和反中微子 · 查看更多 »

反物质

在粒子物理學裡,反物質(英语:antimatter)是反粒子概念的延伸,反物質是由反粒子構成的,如同普通物質是由普通粒子所构成的。例如一顆反質子和一顆反電子〈正電子〉能形成一個反氫原子,如同電子和質子形成一般物質的氫原子。此外,物質與反物質的結合,會如同粒子與反粒子結合一般,導致兩者湮滅,且因而釋放出高能光子(伽瑪射線)或是其他能量較低的正反粒子對。正反物質湮滅所造成的粒子,賦予的動能等同於原始正反物質對的動能,加上原物質靜止質量與生成粒子靜質量的差,後者通常佔大部分。(愛因斯坦相對論指出,質量與能量是等價的。) 反物質無法在自然界找到,除非是在稍縱即逝的少量存在(例如因放射衰變或宇宙射線等現象)。這是由於反物質若非存在於像物理實驗室的人工環境下,則無可避免地隨即與自然界的物質發生碰觸並湮滅。反粒子和一些穩定的反物質(例如反氫)可以人工製造出極少量,但卻不足以達到可對這些物質驗證其理論性的程度。 在科學與科幻領域,都有很大的疑問關於為何所見的宇宙很明顯地幾乎充滿了物質、是否有其他地方幾乎充滿了反物質,以及是否能夠駕馭反物質,但在現今可見的宇宙範圍中,明顯的正反物質不對稱性成了物理的最大難題之一。許多可能的物理過程都是在探究重子時所發現。.

新!!: 質子衰變和反物质 · 查看更多 »

史蒂芬·霍金

史蒂芬·威廉·霍金,CH,CBE,FRS,FRSA(Stephen William Hawking,),英國理論物理學家、宇宙學家,及作家生前任職劍橋大學研究主任,20世紀當代最偉大的物理學家之一。他在科學上有許多貢獻,包括與羅傑·潘洛斯共同合作提出在廣義相對論框架內的潘洛斯–霍金奇性定理,以及他對關於黑洞會發放輻射的理論性預測(現稱為霍金輻射)。霍金是第一個提出由廣義相對論和量子力學聯合解釋的宇宙論理論之人。他是量子力學的多世界詮釋的積極支持者。 霍金是(FRSA)的得獎者,並成為宗座科學院的終身會員,並曾經獲得總統自由勳章,是美國所頒發最高榮譽的平民獎。2002年,霍金在BBC的「最偉大的100名英國人」民意調查中位列第25位。從1979年至2009年,霍金是劍橋大學的盧卡斯數學教授。霍金撰寫了多本闡述自己理論與一般宇宙論的科普著作,並廣受大眾歡迎。他的著作《時間簡史:從大爆炸到黑洞》曾經破紀錄地榮登英國《星期日泰晤士報》的暢銷書排行榜共計237周。 霍金患有一種罕見的早發性緩慢進展的運動神經元疾病(也稱為肌萎縮性脊髓側索硬化症、ALS、盧·賈里格症或渐冻人症),病情會隨著年月逐漸惡化至嚴重。他晚年已是全身癱瘓,無法發聲,必須依賴語音產生裝置來與其他人溝通。最初裝置透過手持開關來使用,最終需要透過使用單邊臉頰肌肉。 2018年3月14日,霍金的家人發表聲明表示霍金去世,終年76歲。其骨灰的下葬儀式在2018年6月15日於倫敦西敏寺中殿的教堂中舉行。.

新!!: 質子衰變和史蒂芬·霍金 · 查看更多 »

吳忠超

吴忠超( ),中国福建省福州人,浙江工业大学教授,因将其导师史蒂芬·霍金的《时间简史》、《果壳中的宇宙》和《大设计》等大量科普著作翻译为中文而为人熟知。.

新!!: 質子衰變和吳忠超 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

新!!: 質子衰變和大爆炸 · 查看更多 »

大統一能量

#重定向 大一統能量.

新!!: 質子衰變和大統一能量 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

新!!: 質子衰變和夸克 · 查看更多 »

契忍可夫輻射

契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.

新!!: 質子衰變和契忍可夫輻射 · 查看更多 »

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

新!!: 質子衰變和宇宙 · 查看更多 »

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

新!!: 質子衰變和宇宙線 · 查看更多 »

實驗物理學

物理學領域中,實驗物理學或實驗物理是直接觀察物理現象,以獲取關於宇宙中從大到小各種資料的學科分類,包含許多類型的子學科。其中各個子學科皆有一相似目標,即是收集並解釋所得到的數據資料。方法上則各異,從很簡單的實驗與觀察,到如同大型強子對撞機(Large Hadron Collider, LHC)這樣的複雜實驗都屬於此一分類。.

新!!: 質子衰變和實驗物理學 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 質子衰變和不确定性原理 · 查看更多 »

中子

| magnetic_moment.

新!!: 質子衰變和中子 · 查看更多 »

希格斯玻色子

希格斯玻色子(Higgs boson)是標準模型裏的一種基本粒子,是一種玻色子,自旋為零,宇稱為正值,不帶電荷、色荷,極不穩定,生成後會立刻衰變。希格斯玻色子是希格斯場的量子激發。根據希格斯機制,基本粒子因與希格斯場耦合而獲得質量。假若希格斯玻色子被證實存在,則希格斯場應該也存在,而希格斯機制也可被確認為基本無誤。 物理學者用了四十多年時間尋找希格斯玻色子的蹤跡。大型強子對撞機(LHC)是全世界至今為止最昂貴、最複雜的實驗設施之一,其建成的一個主要任務就是尋找與觀察希格斯玻色子與其它種粒子。2012年7月4日,歐洲核子研究組織(CERN)宣布,LHC的緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器(ATLAS)测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。2013年3月14日,歐洲核子研究組織發表新聞稿正式宣布,先前探測到的新粒子暫時被確認是希格斯玻色子,具有零自旋與偶宇稱,這是希格斯玻色子應該具有的兩種基本性質,但有一部分實驗結果不盡符合理論預測,更多數據仍在等待處理與分析。 希格斯玻色子是因物理學者彼得·希格斯而命名。術語「玻色子」是為了紀念印度物理學者薩特延德拉·玻色而命名。玻色子的自旋为整数,其物理行為可以用玻色-愛因斯坦統計描述,不遵守泡利不相容原理,即處於單獨一個量子態上的粒子數目不受限制。他是於1964年提出希格斯機制的六位物理學者中的一位。2013年10月8日,因為“次原子粒子質量的生成機制理論,促進了人類對這方面的理解,並且最近由歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊緲子線圈探測器發現的基本粒子證實”,弗朗索瓦·恩格勒、彼得·希格斯榮獲2013年諾貝爾物理學獎。.

新!!: 質子衰變和希格斯玻色子 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

新!!: 質子衰變和弱相互作用 · 查看更多 »

強交互作用

#重定向 强相互作用.

新!!: 質子衰變和強交互作用 · 查看更多 »

微擾理論 (量子力學)

量子力學的微擾理論(perturbation theory)引用一些數學的微扰理论的近似方法於量子力學。當遇到比較複雜的量子系統時,這些方法試著將複雜的量子系統簡單化或理想化,變成為有精確解的量子系統,再應用理想化的量子系統的精確解,來解析複雜的量子系統。微扰理论从可以获得精确解或易于得到近似解的相对简单体系出发,在這簡單系統的哈密頓量(Hamiltonian)裏,加上一個很弱的微擾,變成了較複雜系統的哈密頓量。假若這微擾不是很大,複雜系統的許多物理性質(例如,能級,量子態)可以表達為簡單系統的物理性質加上一些修正。這樣,從研究比較簡單的量子系統所得到的知識,可以進而研究比較複雜的量子系統。 微擾理論可以分為兩類,不含時微擾理論(Time-independent perturbation theory)與含時微擾理論(Time-dependent perturbation theory)。在不含時微擾理論中,哈密顿量的微扰项不显含時間;而含時微擾理論的微擾哈密頓量含時間,詳見含時微擾理論。本篇文章只講述不含時微擾理論。此後凡提到微擾理論,皆指不含時微擾理論。.

新!!: 質子衰變和微擾理論 (量子力學) · 查看更多 »

俄亥俄州

俄亥俄州(State of Ohio)位于美國中东部,是五大湖地区的组成部分。俄亥俄州处于美国文化和地理的交叉口,州民来自新英格兰、美国中部、阿巴拉契亚和美国上南部等地区。 俄亥俄州是第一个依據《西北法令》加入聯邦的州,邮政编码“OH”(以前為“O”)。“俄亥俄”来源于当地土著易洛魁族语,意为“美好之河(Beautiful River)”。 为了表达敬意,美國海軍以“俄亥俄”命名過多艘軍艦。.

新!!: 質子衰變和俄亥俄州 · 查看更多 »

土壤

土壤(Boden,soil)是一種自然體,由數層不同厚度的土層(Bodenhorizont,soil horizon)所構成,主要成分是礦物質。土壤和母質的差異主要是表現在形態特徵或物理、化學、礦物等這種解釋嚴格來說(或者以環境科學的角度來說)並不正確:土壤是由母質(岩石),經過風化作用後所形成的,其特性與母質不盡相同。土壤經由各種風化作用和生物的活動產生的礦物和有機物混合組成,存在著固體、氣體和液體等狀態。疏鬆的土壤微粒組合起來,形成充滿間隙的土壤,而在這些孔隙中則含有溶解溶液(液體)和空氣(氣體)。因此土壤通常被視為有三種狀態。大部分土壤的密度為1~2 g/cm³。地球上大多數的土壤,生成時間多晚於更新世,只有很少的土壤成分的生成年代早於第三紀。.

新!!: 質子衰變和土壤 · 查看更多 »

玻色子

在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).

新!!: 質子衰變和玻色子 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 質子衰變和粒子物理學 · 查看更多 »

美國

#重定向 美国.

新!!: 質子衰變和美國 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 質子衰變和电子 · 查看更多 »

物质

物质是一個科學上沒有明確定義的詞,一般是指靜止質量不為零的東西。物质也常用來泛稱所有組成可觀測物體的成份 。 所有可以用肉眼看到的物體都是由原子組成,而原子是由互相作用的次原子粒子所組成,其中包括由質子和中子組成的原子核,以及許多電子組成的電子雲 。 一般而言科學上會將上述的複合粒子視為物質,因為他們具有靜止質量及體積。相對的,像光子等无质量粒子一般不視為物質。不過不是所有具有靜止質量的粒子都有古典定義下的體積,像夸克及輕子等粒子一般會視為質點,不具有大小及體積。而夸克和輕子之間的交互作用才使得質子和中子有所謂的體積,也使得一般物體有體積。 物質常見的物質狀態有四種:固體、液體、氣體及等离子体。不過實驗技術的進步產生了許多新的物質狀態,像是玻色–爱因斯坦凝聚及费米子凝聚态。對於基本粒子的研究也產生了新的物質狀態,像是夸克-膠子漿 。在自然科學的歷史中,許多人都在研究物質的確切性質,物質是由許多離散組件組合而成的概念,即所謂的「物質粒子論」,最早是由古希臘哲學家留基伯及德谟克利特提出。 愛因斯坦證明所有物體都可以轉換為能量(即質能等價),之間的關係式即為著名的E.

新!!: 質子衰變和物质 · 查看更多 »

質子

|magnetic_moment.

新!!: 質子衰變和質子 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

新!!: 質子衰變和费米子 · 查看更多 »

费曼图

费恩曼图(Feynman diagram)是美国物理学家理查德·费曼(即费恩曼)在处理量子场论时提出的一种形象化的方法,描述粒子之间的相互作用、直观地表示粒子散射、反应和转化等过程。使用费恩曼图可以方便地计算出一个反应过程的跃迁概率。 在费恩曼图中,粒子用線表示,费米子一般用实线,光子用波浪线,玻色子用虚线,胶子用圈线。一線與另一線的連接點稱為頂點。费恩曼图的橫軸一般为时间轴,向右为正,向左代表初态,向右代表末态。与时间轴方向相同的箭头代表正费米子,与时间轴方向相反的箭头表示反费米子。.

新!!: 質子衰變和费曼图 · 查看更多 »

超对称

超对称是费米子和玻色子之间的一种對稱性,该对称性至今在自然界中尚未被观测到。物理学家认为这种对称性是自发破缺的。大型強子對撞機將會驗證粒子是否有相對應的超對稱粒子這個疑問。 超對稱模型能解決三個難題:.

新!!: 質子衰變和超对称 · 查看更多 »

超對稱粒子

在粒子物理學裏,超對稱粒子或超伴子是一種以超對稱聯係到另一種較常見粒子的粒子。在這物理理論中,每種費米子都應有一種玻色子“拍檔”(費米子的超對稱粒子),反之亦然。沒有“破缺”的超對稱預測:一顆粒子和其超對稱粒子都應有完全相同的質量。至今仍然沒有標準模型粒子的超對稱粒子被發現。這可能表示超對稱理論是錯誤的,或超對稱並不是一種“不破”的對稱性。如果超對稱粒子被發現,其質量會決定超對稱破裂時的尺度 就實純量的粒子(如軸子)而言,它們有一個費米子超對稱粒子,也有一個實純量場。 在延伸的超對稱裏,一種特定粒子可能會有多于一個超對稱粒子。舉例,在四維空間裏,一個光子會有兩個費米超對稱粒子和一個純量超對稱粒子。 在零維的情況下(常被稱作矩陣力學),有可能存在超對稱,但沒有超對稱粒子。然而,這只有在當超對稱性不包含超對稱粒子的情況下才成立。.

新!!: 質子衰變和超對稱粒子 · 查看更多 »

超级神冈探测器

超级神冈探测器(Super-Kamiokande,可縮寫為Super-K或SK;スーパーカミオカンデ),全名為超級神岡中微子探測實驗(Super-Kamioka Neutrino Detection Experiment),是日本東京大學在岐阜縣飛驒市神岡町的茂住礦山一个深达1000米的废弃砷矿中建造的大型中微子探测器。其目标是探测质子衰变以及被设计来寻找太阳、地球大气的中微子,并观测銀河系內超新星爆发。.

新!!: 質子衰變和超级神冈探测器 · 查看更多 »

輕子數

轻子数是粒子物理学中定义的一个量子数,常用L来表示。轻子数规定为轻子的数目减去反轻子的数目。方程形式: 因此所有的轻子的轻子数为+1, 反轻子的轻子数为−1, 非轻子粒子的轻子数为0.

新!!: 質子衰變和輕子數 · 查看更多 »

重子

重子(Baryon)是一個現代粒子物理學名詞,在標準模型理論中,「重子」這一名詞是指由三个夸克(或者三个反夸克组成的「反重子」)组成的複合粒子。在這理論中它是強子的一類。值得注意的是,因為重子屬於複合粒子,所以「不是」基本粒子。最常见的重子有組成日常物質原子核的质子和中子,合称为核子。其它重子中,有比这两種粒子更重的粒子,所谓的超子。重子这个称呼是指其质量相对重于轻子和介于两者之间的介子起的。 重子是强相互作用的费米子,也就是说它们遵守费米-狄拉克统计和泡利不相容原理,它们通过组成它们的夸克参加强相互作用。同时它们也参加弱相互作用和引力。带电荷的重子也参加电磁力作用。 重子与由一个夸克和一个反夸克组成的介子一起被合称为强子。强子是所有强相互作用的粒子的总称。 质子是唯一独立稳定的重子。中子假如不与其它中子或者质子一起组成原子核的话就不會稳定,並產生衰变。.

新!!: 質子衰變和重子 · 查看更多 »

重子数

重子数是粒子物理学中定义的一个量子数,常用 B 来表示。规定重子的重子数为 +1,反重子的重子数为 -1,其他粒子如轻子、介子、规范玻色子的重子数为 0。 根据夸克禁闭,组成粒子的夸克的色荷总和必须为零(即白色)。正常强子实现色荷为白色有三种方式:.

新!!: 質子衰變和重子数 · 查看更多 »

Π介子

在粒子物理学中,π介子是以下三种次原子粒子之一:π+、π0和π−。π介子是最重要的介子之一,在揭示强核力的低能量特性中起着重要的作用。.

新!!: 質子衰變和Π介子 · 查看更多 »

X及Y玻色子

在粒子物理學中,X及Y玻色子(或有時合稱為X玻色子)是一種假想基本粒子,與W及Z玻色子類似,但它們傳遞的是一種全新的力,而這種力是由喬吉-格拉肖模型所預測的,它是一套大統一理論。.

新!!: 質子衰變和X及Y玻色子 · 查看更多 »

标准模型

在粒子物理學裏,標準模型(Standard Model,SM)是描述強力、弱力及電磁力這三種基本力及組成所有物質基本粒子的理論,屬於量子場論的範疇,並與量子力學及狭义相對論相容。到目前為止,幾乎所有對以上三種力的實驗的結果都合乎這套理論的預測。但是標準模型還不是萬有理論,主要是因為還沒有描述引力。.

新!!: 質子衰變和标准模型 · 查看更多 »

次原子粒子

次原子粒子,或稱亚原子粒子。是指比原子還小的粒子。例如:電子、中子、質子、介子、夸克、膠子、光子等等。.

新!!: 質子衰變和次原子粒子 · 查看更多 »

正電子

正电子(又称陽電子、反電子、正子,Positron),是電子的反粒子,即電子的對應反物質。它带有+1单位电荷,+1.6×10-19C,自旋为1/2,质量与电子相同,皆为9.10×10-31kg。 正电子与电子碰撞时会产生湮灭现象,这一过程遵守电荷守恒、能量守恒、动量守恒和角动量守恒。在高能情况下,湮灭会生成其他基本粒子。在低能情况下,正负电子湮灭主要生成两个或三个光子(有时也会生成更多光子)。另外,电子和正电子在湮灭之前有时会形成亚稳定的束缚态,即电子偶素。根据电子和正电子的不同自旋状态,电子偶素分为单态(1S0,总自旋为0)和三重态(3S1,总自旋为1)。在真空中,单态电子偶素的半衰期为125ps。三重态电子偶素的半衰期为142ns。 当能量超过1.02兆电子伏特的光子经过原子核附近时(成對產生),或者在放射性元素的正β衰变中(通過弱相互作用),都有可能产生正电子。 1930年英国物理学家保罗·狄拉克从理论上预言了正电子的存在,1932年美国物理学家卡尔·戴维·安德森在宇宙射线中发现了正电子。.

新!!: 質子衰變和正電子 · 查看更多 »

日本

日本國(),是位於東亞的島嶼國家,由日本列島、琉球群島和伊豆-小笠原群島等6,852個島嶼組成,面積約37.8万平方公里。國土全境被太平洋及其緣海環抱,西鄰朝鮮半島及俄罗斯,北面堪察加半島,西南為臺灣及中國東部。人口達1.26億,居於世界各國第11位,當中逾3,500萬以上的人口居住於東京都與周邊數縣構成的首都圈,為世界最大的都市圈。政體施行議會制君主立憲制,君主天皇為日本國家與國民的象徵,實際的政治權力則由國會(參眾兩院)、以及內閣總理大臣(首相)所領導的內閣掌理,最高法院為最高裁判所。 傳說日本於公元前660年2月11日,由天照大神之孫下凡所生之後代磐余彥尊所建,在公元4世紀出現首個統一政權,並於大化改新中確立了天皇的中央集权體制。至平安時代結束前,日本透過文字、宗教、藝術、政治制度等從漢文化引進的事物,開始衍生出今日為人所知的文化基礎。12世紀後的六百年間,日本由武家階級建立的幕府實際掌權。17世纪起江户幕府頒布锁国令,至1854年被迫開港才結束。此後,日本在西方列強進逼的時局下,首先天皇從幕府手中收回統治權,接著在19世紀中期的明治维新進行大規模政治與經濟改革,實現工業化及現代化;而自19世纪末起,日本首先兼併琉球,再拿下台灣、朝鮮、樺太等地為屬地。進入20世紀時,日本已成為當時世界的帝國主義強權之一,也是當時東方世界唯一的大國。日本後來成為第二次世界大戰的軸心國之一,對中國與南洋發動全面侵略,但最终於1945年戰敗投降。日本投降至1952年《旧金山和约》生效前,同盟国军事占领日本,並監督日本制定新憲法、建立今日所見的政治架構,日本轉型為以國會為中心的民主政體,天皇地位虛位化,並依照憲法第九條放棄維持武装以及宣戰權。而日本雖在法律上實施非武裝化,出於自我防衛上的需要,仍擁有功能等同於其他國家軍隊的自衛隊。 日本是世界第三大經濟體,亦為七大工業國組織成員,是世界先進國家之一,主要奠基於日本經濟在二戰後的巨幅增長。現時日本的科研能力、工業基礎和製造業技術均位居世界前茅,並是世界第四大出口國和進口國。2015年,日本的人均國內生產總值依國際匯率可兌換成為三萬二千,人均國民收入則在三萬七千美元左右,人類發展指數亦一直維持在極高水平。.

新!!: 質子衰變和日本 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 質子衰變和放射性 · 查看更多 »

重定向到这里:

质子衰变

传出传入
嘿!我们在Facebook上吧! »