徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

诺贝尔物理学奖得主列表

指数 诺贝尔物理学奖得主列表

诺贝尔物理学奖是诺贝尔奖的六个奖项之一,由瑞典皇家科学院每年颁发给在物理科学领域做出杰出贡献的科学家。 根据阿尔弗雷德·诺贝尔的遗愿,该奖由诺贝尔基金会管理,由瑞典皇家科学院选出5名成员组成一个委员会来评选出获奖者。 诺贝尔物理学奖於1901年第一次頒發,由德国的威廉·伦琴獲得。每个获奖者会得到一块奖牌,一份获奖证书,以及一笔不菲的奖金,奖金的数额每年会有变化。1901年,伦琴得到150,782瑞典克朗,相当于2007年12月的7,731,004瑞典克朗。2008年,三位获奖者(小林诚、益川敏英和南部阳一郎)分享了总额为1千万瑞典克朗的奖金(略多于100万欧元,或140万美元)。该奖每年于12月10日,即阿尔弗雷德·诺贝尔逝世周年纪念日,以隆重的仪式在斯德哥尔摩音乐厅颁发。 约翰·巴丁是唯一两次获得该奖的得主,他于1956年和1972年獲獎。威廉·劳伦斯·布拉格是至今最年轻的诺贝尔物理学奖奖得主,也是诺贝尔三项科学奖项中的最年轻得主,他在1915年获奖时仅有25岁。 至今共有两位女性获得过该奖,分别是玛丽·居里(1903年)和玛丽亚·格佩特-梅耶(1963年)。在六个诺贝尔奖项中,这是女性获奖人次第二少的奖项(只多於僅一位女性得主的諾貝爾經濟學獎)。 截至2016年10月,共有203人获得过该奖。诺贝尔物理学奖有6年因故停发(1916、1931、1934、1940至1942)。.

348 关系: 加布里埃尔·李普曼基本粒子基普·索恩埃尔温·薛定谔埃米利奥·塞格雷埃里克·康奈尔原子原子核原子核物理学半导体卡尔·威曼卡尔·米勒卡尔·费迪南德·布劳恩卡尔·戴维·安德森卡洛·鲁比亚南部阳一郎反質子反铁磁性古列尔莫·马可尼古斯塔夫·达伦古斯塔夫·赫兹史蒂文·温伯格同素异形体各向异性各國諾貝爾獎得主人數塞尔日·阿罗什塞西尔·鲍威尔塞曼效应多普勒效应夏尔·纪尧姆大型強子對撞機大英百科全书天体物理学天野浩夸克奥格·玻尔奥托·施特恩威廉·劳伦斯·布拉格威廉·亨利·布拉格威廉·伦琴威廉·福勒威廉·维恩威廉·肖克利威利斯·兰姆宇宙加速膨脹宇宙微波背景辐射宇宙線安东尼·休伊什安德烈·海姆安東尼·萊格特...对称性 (物理学)对称性破缺密度小柴昌俊小林诚 (物理学家)尼古拉·巴索夫尼古拉斯·布隆伯根尼尔斯·玻尔射电天文学射电望远镜崔琦巨磁阻效应巴里·巴里什丁肇中不變鋼中子中子衍射技术中微子中微子振荡中村修二希格斯机制布赖恩·约瑟夫森帕维尔·阿列克谢耶维奇·切连科夫帕特里克·布萊克特干涉 (物理学)乔治·埃尔伍德·史密斯乔治·夏帕克乔治·汤姆孙乔治·斯穆特亚历山大·普罗霍罗夫亨德里克·洛伦兹亨利·贝可勒尔亨利·肯德尔康斯坦丁·诺沃肖洛夫云室介子伊利亚·弗兰克伊瓦尔·贾埃弗伊西多·拉比伊戈尔·塔姆伯特伦·布罗克豪斯伯顿·里克特弱相互作用强相互作用伽博·丹尼斯弗里茨·泽尔尼克弗雷德里克·莱因斯弗朗克·韦尔切克弗朗索瓦·恩格勒休·波利策异质结彼得·卡皮查彼得·塞曼彼得·希格斯彼得·格林贝格德国保罗·狄拉克國籍利奥·雷恩沃特利昂·库珀利昂·萊德曼列夫·朗道切连科夫效应傑克·基爾比唐纳德·格拉泽内维尔·莫特凝聚态物理学凯·西格巴恩全息摄影光学光學頻譜光導纖維光电效应光谱学克劳斯·冯·克利青克利福德·沙尔克林顿·戴维孙克洛德·科昂-唐努德日回旋加速器固体物理学BCS理论CP破壞皮埃尔-吉勒·德热纳皮埃尔·居里石墨烯玻色-爱因斯坦凝聚态玛丽·居里玛丽亚·格佩特-梅耶灯塔珀西·布里奇曼理论物理学理查德·費曼磁場磁矩磁流体力学离子阱穆斯堡尔效应等离子体物理学粒子物理學索尔·珀尔马特約翰·凡扶累克約翰·斯特拉特,第三代瑞利男爵約翰內斯·延森緊湊緲子線圈约翰·巴丁约翰·科斯特利茨约翰·马瑟约翰·霍尔约翰·考克饶夫约翰·施里弗约翰内斯·贝德诺尔茨约翰内斯·斯塔克约瑟夫·汤姆孙约瑟夫·泰勒维塔利·拉扎列维奇·金兹堡维尔纳·海森堡维克托·赫斯维恩位移定律罗伊·格劳伯罗伯特·威尔逊罗伯特·密立根罗伯特·科尔曼·理查森罗伯特·霍夫施塔特美元羅伯特·勞夫林爱德华·珀塞尔爱德华·阿普尔顿瑞典克朗瑞典皇家科学院瓦尔·菲奇瓦尔特·博特电子电子显微镜电离层电报物理学物理学史物理学家列表特奥多尔·亨施狄拉克方程式益川敏英相干性莱纳·魏斯聚合物道格拉斯·奥谢罗夫荧光菲利普·安德森菲利普·莱纳德衍射西蒙·范德梅尔马丁·佩尔马丁·赖尔马丁纽斯·韦尔特曼马克斯·冯·劳厄马克斯·玻恩马克斯·普朗克詹姆斯·弗兰克詹姆斯·克罗宁詹姆斯·查德威克諾貝爾經濟學獎高錕譜線计量学让·佩兰诺贝尔基金会诺贝尔奖诺贝尔物理学奖诺曼·拉姆齐谢尔登·格拉肖鲁道夫·穆斯堡尔質子质量费利克斯·布洛赫超导体超导现象超環面儀器超流体超新星路易·奈爾路易斯·阿尔瓦雷茨默里·盖尔曼黑体 (物理学)輕子迈克耳孙干涉仪霍斯特·施特默范德瓦耳斯方程阿卜杜勒·萨拉姆阿尔伯特·爱因斯坦阿尔伯特·迈克耳孙阿尔弗雷德·卡斯特勒阿尔弗雷德·诺贝尔阿尔贝·费尔阿列克谢·阿布里科索夫阿瑟·康普顿阿瑟·麦克唐纳阿瑟·肖洛阿诺·彭齐亚斯赤崎勇赫伯特·克勒默薛定谔方程钱德拉塞卡拉·拉曼肯尼斯·威尔逊邓肯·霍尔丹铁磁性脉冲星重力波 (相對論)量子量子力学量子穿隧效應量子霍尔效应量子電動力學自发对称性破缺里卡尔多·贾科尼苏布拉马尼扬·钱德拉塞卡若雷斯·阿尔费罗夫雷蒙德·戴维斯電場電弱交互作用電磁力電荷集成电路陰極射線陶瓷材料K介子W及Z玻色子X射线X射线晶体学查尔斯·巴克拉查尔斯·汤斯查爾斯·湯姆森·里斯·威爾遜恩里科·费米恩斯特·鲁斯卡恒星李政道杨振宁杰尔姆·弗里德曼杰克·施泰因贝格尔杰拉德·特·胡夫特核力核反应核子核磁共振格尔德·宾宁梶田隆章梅尔文·施瓦茨次原子粒子欧内斯特·劳伦斯欧内斯特·沃尔顿欧元欧文·张伯伦欧文·理查森歐洲核子研究組織正電子氦-3氧气气体江崎玲於奈汤川秀树汉尼斯·阿尔文汉斯·德默尔特沃尔夫冈·保罗沃尔夫冈·泡利沃尔特·布喇顿沃爾夫岡·克特勒泡利不相容原理波利卡普·库施波函数液晶激微波激光激光干涉引力波天文台朝永振一郎本·莫特森振荡器朱利安·施温格朱棣文戴维·索利斯戴维·瓦恩兰戴维·李戴维·格娄斯浮标海克·卡末林·昂內斯海因里希·罗雷尔斯德哥尔摩放大器放射性感光耦合元件扫描隧道显微镜拉塞尔·赫尔斯拉曼效应曼内·西格巴恩晶体晶体管晶体结构 扩展索引 (298 更多) »

加布里埃尔·李普曼

加布里埃尔·李普曼(法语:Gabriel Lippmann,),法國知名物理學家,他因為發明製作彩色玻璃照相技術,於1908年獲得諾貝爾物理學獎。除此之外,他亦對物理波長的干涉現象有其深研,亦有李普曼干涉定律發表。.

新!!: 诺贝尔物理学奖得主列表和加布里埃尔·李普曼 · 查看更多 »

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 诺贝尔物理学奖得主列表和基本粒子 · 查看更多 »

基普·索恩

基普·斯蒂芬·索恩(Kip Stephen Thorne, )是美国理论物理学家,主要贡献是在引力物理和天体物理学领域。索恩和英国物理学家斯蒂芬·霍金,以及美国天文学家、科普作家、科幻小说作家卡尔·萨根保持了长期的好友和同事关系。2009年以前一直担任加州理工学院费曼理论物理学教授,是当今世界上研究在天体物理学領域的广义相对论理論與實驗的领导者之一。 2017年,索恩因对LIGO探测器及引力波探测的决定性贡献而与莱纳·魏斯及巴里·巴里什共同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和基普·索恩 · 查看更多 »

埃尔温·薛定谔

埃尔温·魯道夫·尤則夫·亞歷山大·薛定諤(Erwin Rudolf Josef Alexander Schrödinger,),生于奥地利维也纳,是奥地利一位理论物理学家,量子力学的奠基人之一。1926年他提出薛定谔方程,为量子力学奠定了坚实的基础。他想出薛定谔猫思想實驗,试图证明量子力学在宏观条件下的不完备性。 1933年,因為“发现了在原子理论裏很有用的新形式”,薛定諤和英国物理学家保罗·狄拉克共同获得了诺贝尔物理学奖,以表彰他们发现了薛定谔方程和狄拉克方程。 他的父亲鲁道夫·薛定諤是生产油布和防水布的工厂主同时也是一名园艺家。他的母亲格鲁吉亚娜·艾米莉·布兰达是维也纳科技大学的教授亚历山大·鲍尔的女儿。.

新!!: 诺贝尔物理学奖得主列表和埃尔温·薛定谔 · 查看更多 »

埃米利奥·塞格雷

埃米利奥·塞格雷(意大利语:Emilio Segrè,),意大利-美国物理学家,因与欧文·张伯伦发现反质子而共同获得1959年诺贝尔物理学奖,犹太人。.

新!!: 诺贝尔物理学奖得主列表和埃米利奥·塞格雷 · 查看更多 »

埃里克·康奈尔

埃里克·阿林·康奈尔(Eric Allin Cornell,),出生於美國加州帕洛阿尔托,美国物理学家。由于他「在鹼金屬原子稀釋氣體中(製成)玻色-爱因斯坦凝聚的成就,以及關於凝聚特性的早期基礎研究」,与沃爾夫岡·克特勒和卡尔·威曼三人共同获得2001年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和埃里克·康奈尔 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 诺贝尔物理学奖得主列表和原子 · 查看更多 »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 诺贝尔物理学奖得主列表和原子核 · 查看更多 »

原子核物理学

原子核物理学(简称核物理学,核物理或核子物理)是研究原子核成分和相互作用的物理学领域。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构并带动相应的核子技术进展。原子核物理学最常见的和有名的应用是核能发电的和核武器的技术,但研究还提供了在许多领域的应用,包括核医学和核磁共振成像,材料工程的离子注入,以及地质学和考古学中的放射性碳定年法。 粒子物理学领域是从原子核物理学演变出来的,并且通常被讲授与原子核物理学密切相关。.

新!!: 诺贝尔物理学奖得主列表和原子核物理学 · 查看更多 »

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 诺贝尔物理学奖得主列表和半导体 · 查看更多 »

卡尔·威曼

卡尔·埃德温·威曼(Carl Edwin Wieman,),出生於俄勒冈州科瓦利斯),美国物理学家,威曼、沃爾夫岡·克特勒與埃里克·康奈尔,因「在鹼金屬原子稀釋氣體中(製成)玻色-爱因斯坦凝聚的成就,以及關於凝聚特性的早期基礎研究」,獲頒2001年诺贝尔物理学奖,三人平分獎金。 Category:美国物理学家 Category:诺贝尔物理学奖获得者 Category:麻省理工學院校友 Category:史丹佛大學校友 Category:光学学会会士 Category:洛伦兹奖章获得者 Category:富兰克林研究所本杰明·富兰克林奖章获得者 Category:奥斯特奖章获得者.

新!!: 诺贝尔物理学奖得主列表和卡尔·威曼 · 查看更多 »

卡尔·米勒

卡尔·米勒(Karl Müller,,巴塞尔),瑞士物理学家,1987年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和卡尔·米勒 · 查看更多 »

卡尔·费迪南德·布劳恩

#重定向 卡尔·布劳恩.

新!!: 诺贝尔物理学奖得主列表和卡尔·费迪南德·布劳恩 · 查看更多 »

卡尔·戴维·安德森

卡尔·戴维·安德森(Carl David Anderson,),美国物理学家,因发现了正电子而获得1936年诺贝尔物理学奖。 安德森出生在美国纽约,父母是瑞典移民。安德森1927年在加州理工学院获得学士学位,1930年获得博士学位。在著名物理学家密立根的指导下,安德森研究了宇宙线,在云室的轨迹中发现了一种质量与电子相当,但是带有正电荷的新粒子——正电子。这一发现在1932年公布,并完全符合保罗·狄拉克的理论预言。由于这一发现,安德森获得了1936年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和卡尔·戴维·安德森 · 查看更多 »

卡洛·鲁比亚

卡洛·鲁比亚(Carlo Rubbia,),出生于戈里齐亚,意大利物理学家,因与西蒙·范德梅尔在歐洲核子研究組織共同发现W及Z玻色子而获得1984年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和卡洛·鲁比亚 · 查看更多 »

南部阳一郎

南部阳一郎(,),生於日本東京的日裔美國公民,世界知名粒子物理学家,去世前为芝加哥大学物理系及费米研究所名誉退休教授、大阪大學特別榮譽教授、大阪市立大學名譽教授、立命館亞洲太平洋大學學術顧問。 南部教授是20世紀最偉大的物理學家之一,也是弦理论的創始人之一,普世譽為「物理學的預言家」。他從1960年代起就在粒子物理领域开展了许多超前時代的先驱研究,包括发现亚原子物理学中的自发对称性破缺机制,提出等。此外,他還提出量子色动力学的色荷規範,亦曾為彼得·希格斯發現希格斯機制提供重要建議。 在超過半世紀的時間裡,南部獲得幾乎所有的物理學界最高榮譽,其中包括2008年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和南部阳一郎 · 查看更多 »

反質子

反質子(antiproton)是質子的反粒子,其質量及自旋與質子相同,但電荷及磁矩則與質子相反,帶有與電子相同的負電荷。 保羅·狄拉克在他的1933年諾貝爾物理學獎演講中預言反質子的存在。1955年,加州大學柏克萊分校物理學家埃米利奥·塞格雷和欧文·张伯伦透過粒子加速器,而發現了這種反粒子,他們二人於1959年獲得諾貝爾物理學獎。 反質子是質子的反粒子,符號為,其質量、自旋與質子相同,且壽命也與質子相當;但其電荷及磁矩則與質子相反,且帶有與電子同電量的負電荷。這些性質與量子場理論的基礎--CPT對稱理論預測相符合。一個反質子是由兩個上反夸克及一個下反夸克所組成()。雖然反質子本身是穩定的,但由於反質子與質子撞擊會發生湮滅的現象,並且轉化為能量,是故反粒子無法在一般的自然環境中保存。 由於這些粒子在與質子撞擊時會相湮滅,轉化為能量,因此這些粒子在自然界中的壽命極短。在歐洲核子研究組織實驗室作出的研究中,他們以同步加速器把質子加速至達26GeV量的水平,然後與金屬銥棒撞擊,其能量足夠產生反質子,在所得到的粒子與反粒子中,科學家用磁鐵把反粒子隔離在真空中。 物理學家塞格雷和張伯倫証實了反質子與質子的相應性質,以及相反的電荷和磁矩。他們二人因而於1959年獲得諾貝爾物理學獎。反質子可以於宇宙射線中被偵測到,目前普遍認為是宇宙射線中的高速正質子與星際間的原子核相互撞擊所產生的,其反應式為: 其中,A表示一個被撞擊的原子核。上式產物中的反質子遂散佈於宇宙中,並受到星際磁場的束縛。 反質子的特性已可由宇宙射線的觀察中略見端倪:反質子的能量分佈會隨著其與星際物質的碰撞而改變,這個性質可以被用來驗證宇宙射線中反質子的成因,目前我們觀測到宇宙射線中反質子的能量分佈跟相互撞擊機制所預測的結果是大體符合的,從這個比較中,科學家們還可以推估宇宙中經由超對稱暗物質粒子湮滅、或黑洞霍金輻射等等特殊機制中產生出的反質子數量的上限。同樣地,科學家也可由目前宇宙中觀測到的反質子的保存時間,推測反質子壽命的下界。迄今科學家多半經由氣球運載實驗(balloon-borne experiment)來偵測宇宙射線中反粒子的存在與性質,此類實驗會在氣球上裝載磁場偵測儀,用以偵測範圍內帶電粒子的性質。 此外也有為了偵測宇宙射線以及反物質的太空任務,例如2006年發射的搭載於人造衛星上的PAMELA偵測模組(Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics),該實驗於2011年報告.發現28個反質子在南大西洋異常區。 2015年,發表論文報告,已成功測量反質子與反質子之間的強作用力,其與質子彼此之間的強作用相同。.

新!!: 诺贝尔物理学奖得主列表和反質子 · 查看更多 »

反铁磁性

反铁磁性(antiferromagnetism)是磁性材料的磁学性质的一种。在这种材料中,相邻电子自旋呈相反方向排列,其磁化率因而接近于零。1932年由Louis Néel首次发现。例如,鉻、錳、輕鑭系元素等等,都具有反鐵磁性。 當溫度大於奈爾溫度T_N時,磁化率\chi與溫度T的理論關係式為 做實驗得到的經驗關係式為 其中,\theta是依物質而定的常數,與T_N差別很大。 理論而言,當溫度小於奈爾溫度T_N時,可以分成兩種狀況:.

新!!: 诺贝尔物理学奖得主列表和反铁磁性 · 查看更多 »

古列尔莫·马可尼

古列尔莫·马可尼(Guglielmo Marconi,),意大利工程师,专门从事无线电设备的研制和改进;1909年诺贝尔物理学奖得主。 馬可尼在1895年春季利用电磁波作通信试验,但是向意大利政府请求资助未果。1896年在英国进行了14.4公里的通讯试验成功,并取得专利。1897年起又进行了一系列的无线电通信实验,他在伦敦成立马可尼无线电报公司。1901年12月12日,馬可尼的研究小組,在紐芬蘭接收到從英國發送出來的第一個橫跨大西洋的無線電信號。1924年受封为侯爵,成为贵族。1932年发现高频波。.

新!!: 诺贝尔物理学奖得主列表和古列尔莫·马可尼 · 查看更多 »

古斯塔夫·达伦

古斯塔夫·达伦(Gustaf Dalén,),瑞典物理學家和發明家,研究領域為機械工程的應用。1912年因為發明結合燃點航標、燃點浮標和蓄電池等功能的自動調節裝置而獲得諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和古斯塔夫·达伦 · 查看更多 »

古斯塔夫·赫兹

古斯塔夫·路德维希·赫兹(Gustav Ludwig Hertz,),德国物理学家,量子力学的先驱,他是1925年诺贝尔物理学奖获得者,電磁波發現者海因里希·鲁道夫·赫兹的侄子和卡尔·赫尔穆特·赫兹的父亲。.

新!!: 诺贝尔物理学奖得主列表和古斯塔夫·赫兹 · 查看更多 »

史蒂文·温伯格

史蒂文·温伯格(Steven Weinberg,),生于纽约,美国物理学家,1979年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和史蒂文·温伯格 · 查看更多 »

同素异形体

同素异形体,是指由同一种化学元素构成,而结构形态却不相同的單质。同素异形体由于结构不同,物理性質与化學性質上也有差異。同素异形体这一术语针对的是单质,而非化合物,更一般的术语是同质异形体,用于晶体材料。 例如磷的兩種同素異形體,紅磷和白磷,它們的燃点分別是攝氏和,充分燃燒之後的產物都是五氧化二磷;白磷(P4)有劇毒,可溶於二硫化碳,紅磷(Pn)無毒,卻不溶於二硫化碳。同素異形體之間在一定條件下可以相互轉化,這種轉化是一種化學變化。 生活中常见的有,碳的同素异形体石墨、金刚石(即钻石)、无定形碳等,磷的同素异形体白磷和红磷,氧元素的同素异形体氧气和臭氧。.

新!!: 诺贝尔物理学奖得主列表和同素异形体 · 查看更多 »

各向异性

非均向性(anisotropy),或作各向異性,與各向同性相反,指物体的全部或部分物理、化学等性质随方向的不同而有所变化的特性,例如石墨单晶的电导率在不同方向的差異可达数千倍,又如天文學上,宇宙微波背景輻射亦擁有些微的非均向性。許多的物理量都具有非均向性,如弹性模量、电导率、在酸中的溶解速度等。.

新!!: 诺贝尔物理学奖得主列表和各向异性 · 查看更多 »

各國諾貝爾獎得主人數

各國諾貝爾獎得主人數,以主權國家或地區區分計算諾貝爾獎得主總數與人均的列表,也計入諾貝爾經濟學獎。。 列表同時認可獲獎之前(通常是出生地)及獲獎當時這2種公民權。倘有雙重國籍則分別計算,1人獲獎2次以1人計算。不計算國際組織得主。斜體為「非國家」單位。 國旗以現存版本為準,已不存在的國家得主計入其繼承國,如蘇聯得主計入俄羅斯。但是中國不包括中華民國。.

新!!: 诺贝尔物理学奖得主列表和各國諾貝爾獎得主人數 · 查看更多 »

塞尔日·阿罗什

塞尔日·阿罗什(Serge Haroche,),法国物理学家、法兰西学院院士,美国国家科学院外籍院士,巴黎高等师范学院教授。他的博士论文导师是1997年诺贝尔物理学奖得主克洛德·科昂-唐努德日。 2012年,因为研究能够量度和操控个体量子系统的突破性实验方法,阿罗什与美国物理学家戴维·瓦恩兰共同荣获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和塞尔日·阿罗什 · 查看更多 »

塞西尔·鲍威尔

塞西尔·鲍威尔(Cecil Powell,),英国物理学家。.

新!!: 诺贝尔物理学奖得主列表和塞西尔·鲍威尔 · 查看更多 »

塞曼效应

塞曼效应(Zeeman effect),在原子物理学和化学中的光谱分析里是指原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家彼得·塞曼譯註发现的,随后荷兰物理学家亨德里克·洛伦兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应(anomalous Zeeman effect)譯註。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。塞曼效應也在核磁共振頻譜學、電子自旋共振頻譜學、磁振造影以及穆斯堡尔谱学方面有重要的應用。.

新!!: 诺贝尔物理学奖得主列表和塞曼效应 · 查看更多 »

多普勒效应

多普勒效应是波源和观察者有相对运动时,观察者接受到波的频率与波源发出的频率並不相同的现象。远方急驶过来的火车鸣笛声变得尖细(即频率变高,波长变短),而离我们而去的火车鸣笛声变得低沉(即频率变低,波长变长),就是多普勒效应的现象,同樣現象也發生在私家車鳴響與火車的敲鐘聲。 这一现象最初是由奥地利物理学家多普勒1842年发现的。荷兰气象学家拜斯·巴洛特在1845年让一队喇叭手站在一辆从荷兰乌德勒支附近疾驶而过的敞篷火车上吹奏,他在站台上测到了音调的改变。这是科学史上最有趣的实验之一。 多普勒效应从19世纪下半叶起就被天文学家用来测量恒星的视向速度。现已被广泛用来佐證观测天体和人造卫星的运动。.

新!!: 诺贝尔物理学奖得主列表和多普勒效应 · 查看更多 »

夏尔·纪尧姆

夏尔·纪尧姆(法语:Charles Guillaume,),瑞士物理學家。1920年,於國際度量衡組織瑞士辦事處任職的他,因發現鎳鋼合金於精密物理中的重要性,而獲得了該年度的諾貝爾物理學獎殊榮。.

新!!: 诺贝尔物理学奖得主列表和夏尔·纪尧姆 · 查看更多 »

大型強子對撞機

大型強子對撞機(Large Hadron Collider,縮寫:LHC)是一座位於瑞士日內瓦近郊歐洲核子研究組織的對撞型粒子加速器,作為國際高能物理學研究之用。LHC已經建造完成,2008年9月10日開始試運轉,並且成功地維持了兩質子束在軌道中運行,成為世界上最大的粒子加速器設施。大型強子對撞機是一個國際合作計劃,由全球85國中的多個大學與研究機構,逾8,000位物理學家合作興建,經費一部份來自歐洲核子研究組織會員國提供的年度預算,以及參與實驗的研究機構所提撥的資金。 大型強子對撞機本預計於2008年10月21日開始進行低能量對撞實驗。但2008年9月19日,大型強子對撞機第三與第四段之間用來冷卻超導磁鐵的液態氦發生了嚴重的洩漏,據推測是由於聯接兩個超導磁鐵的接點接觸不良,在超導高電流的情況下融毀所造成的。依據歐洲核子研究組織的安全條例,必需將磁鐵升回到室溫後詳細檢查才能繼續運轉,這將需要三到四週的時間。要再冷卻回運作溫度,也是得經過三四週的時間,如此正好遇上預定的年度檢修時程,因此必須延遲開始運作的時間。 2009年11月23日,大型強子對撞機進行了在修復完成後的第一次試撞。 2015年4月5日,經過兩年的精心維護與升級,大型強子對撞機再度啟動,預計今年夏天將會進行13TeV質子質子碰撞實驗,探索未知領域,例如,尋找暗物質、分析希格斯機制、研究夸克-膠子等離子體等等。.

新!!: 诺贝尔物理学奖得主列表和大型強子對撞機 · 查看更多 »

大英百科全书

《大英百科全書》(又称《不列顛百科全書》;Encyclopædia Britannica),由私人機構大英百科全書出版社所出版的英語百科全書,被认为是当今世界上最知名、最具权威的百科全书,是英語世界俗稱的ABC百科全書之一。大英百科全書的條目是由大約100名全職編輯及超過4000名專家為受過教育的成年讀者所編寫而成。它被普遍認為是最有學術性的百科全書。 《大英百科全書》是現存仍然發行的最古老的英語百科全書。它在1768年至1771年間在英國爱丁堡首次面世,便馬上受到讀者歡迎,規模日漸龐大。平均13年左右出一个新版。1801年的第三版已經達到21冊。它日盛的地位使招募知名的貢獻者更容易。1875年至1889年間的第9版和1911年的第11版已經被認為是學術與文學風格的標誌性百科全書。自從第11版開始,《大英百科全書》的條目慢慢變得精簡以打進北美市場。1933年,《大英百科全書》是首部百科全書採納「連續性修訂」政策,即不斷再版並且定期更新條目。 Aside from providing an excellent summary of the Britannica's history and early spin-off products, this article also describes the life-cycle of a typical Britannica edition.

新!!: 诺贝尔物理学奖得主列表和大英百科全书 · 查看更多 »

天体物理学

天體物理學,又稱「天文物理學」,是研究宇宙的物理學,這包括星體的物理性質(光度,密度,溫度,化學成分等等)和星體與星體彼此之間的交互作用。應用物理理論與方法,天體物理學探討恆星結構、恆星演化、太陽系的起源和許多跟宇宙學相關的問題。由於天體物理學是一門很廣泛的學問,天文物理學家通常應用很多不同的學術領域,包括力學、電磁學、統計力學、量子力學、相對論、粒子物理學等等。由於近代跨學科的發展,與化學、生物、歷史、計算機、工程、古生物學、考古學、氣象學等學科的混合,天體物理學目前大小分支大約三百到五百門主要專業分支,成為物理學當中最前沿的龐大領導學科,是引領近代科學及科技重大發展的前導科學,同時也是歷史最悠久的古老傳統科學。 天體物理實驗數據大多數是依賴觀測電磁輻射獲得。比較冷的星體,像星際物質或星際雲會發射無線電波。大爆炸後,經過紅移,遺留下來的微波,稱為宇宙微波背景輻射。研究這些微波需要非常大的無線電望遠鏡。 太空探索大大地擴展了天文學的疆界。太空中的觀測可讓觀測結果避免受到地球大氣層的干擾,科學家常透過使用人造衛星在地球大氣層外進行紅外線、紫外線、伽瑪射線和X射線天文學等電磁波波段的觀測實驗,以獲得更佳的觀測結果。 光學天文學通常使用加裝電荷耦合元件和光譜儀的望遠鏡來做觀測。由於大氣層的擾動會干涉觀測數據的品質,故於地球上的觀測儀器通常必須配備調適光學系統,或改由大氣層外的太空望遠鏡來觀測,才能得到最優良的影像。在這頻域裏,恆星的可見度非常高。藉著觀測化學頻譜,可以分析恆星、星系和星雲的化學成份。 理論天體物理學家的工具包括分析模型和計算機模擬。天文過程的分析模型時常能使學者更深刻地理解箇中奧妙;計算機模擬可以顯現出一些非常複雜的現象或效應其背後的機制。 大爆炸模型的兩個理論棟樑是廣義相對論和宇宙學原理。由於太初核合成理論的成功和宇宙微波背景輻射實驗證實,科學家確定大爆炸模型是正確無誤。最近,學者又創立了ΛCDM模型來解釋宇宙的演化,這模型涵蓋了宇宙暴胀(cosmic inflation)、暗能量、暗物質等等概念。 理論天體物理學家及實測天體物理學家分別扮演這門學科當中的兩大主力研究者,兩者專業分工。理論天體物理學家通常扮演大膽假設的研究者,理論不斷推陳出新,對於數據的驗證關心程度較低,假設程度太高時,經常會演變成偽科學,一般都是天體物理學研究者當中的激進人士。實測天體物理學家通常本身精通理論天體物理,在相當程度上來說也有能力自行發展理論,扮演小心求證的研究者,通常是物理實證主義的奉行者,只相信觀測數據,經常對理論天體物理學所提出的假說進行證偽或證實的活動,一般都是天體物理學研究者當中的保守人士。.

新!!: 诺贝尔物理学奖得主列表和天体物理学 · 查看更多 »

天野浩

天野浩(,),日本工程學家,美國國家工程院外籍院士,專長半导体器件制造。現任名古屋大學特別教授,榮獲文化勳章,並被表彰為文化功勞者。 2014年凭借「發明高亮度藍色發光二極體,帶來了節能明亮的白色光源」与赤崎勇、中村修二共同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和天野浩 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

新!!: 诺贝尔物理学奖得主列表和夸克 · 查看更多 »

奥格·玻尔

奥格·尼尔斯·玻尔(Aage Niels Bohr,),丹麦核物理学家,因“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”与本·莫特森及利奥·雷恩沃特共同榮獲1975年诺贝尔物理学奖。基于雷恩沃特提出的原子核的不规则形状液滴模型,玻尔与莫特森发展出一套与实验結果高度一致的詳細理论。他与父亲尼尔斯·玻尔是四对同获诺贝尔物理学奖的父子之一。.

新!!: 诺贝尔物理学奖得主列表和奥格·玻尔 · 查看更多 »

奥托·施特恩

奧托·斯特恩(Otto Stern,),德國裔美國核物理學家及實驗物理學家,1943年諾貝爾物理學獎獲得者。他發展了核物理研究中的分子束方法並發現了質子磁矩,獲得了1943年的諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和奥托·施特恩 · 查看更多 »

威廉·劳伦斯·布拉格

威廉·劳伦斯·布拉格爵士,CH,OBE,MC,FRS(Sir William Lawrence Bragg,),出生於澳洲的物理学家,他擁有澳洲和英國雙重國籍,因為發現了關於X射線衍射的布拉格定律,1915年与其父威廉·亨利·布拉格一同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和威廉·劳伦斯·布拉格 · 查看更多 »

威廉·亨利·布拉格

威廉·亨利·布拉格爵士,OM,KBE,FRS(Sir William Henry Bragg,),英国物理学家、化学家,1915年与其子威廉·劳伦斯·布拉格一同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和威廉·亨利·布拉格 · 查看更多 »

威廉·伦琴

威廉·康拉德·伦琴(Wilhelm Conrad Röntgen,),德国物理学家。 1895年11月8日,时为德国维尔茨堡大学校长的他在进行阴极射线的实验时,观察到放在射线管附近涂有氰亚铂酸钡的屏上发出的微光,最后他确信这是一种尚未为人所知的新射线。有人提议将他发现的新射线定名为“伦琴射线”,伦琴却坚持用“X射线”这一名称,产生X射线的机器叫做X射线机。伦琴的名字英文一般写为Roentgen(德文名字Röntgen的另一种拼法),很多英语文献和资料使用这一拼写。1901年,首届诺贝尔奖颁发,伦琴获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和威廉·伦琴 · 查看更多 »

威廉·福勒

威廉·福勒(William Fowler,),美国天体物理学家,1979年获太平洋天文学会布鲁斯奖,1983年获瑞典皇家科学院诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和威廉·福勒 · 查看更多 »

威廉·维恩

威廉·卡尔·维尔纳·奥托·弗里茨·弗兰茨·维恩(Wilhelm Carl Werner Otto Fritz Franz Wien,),德國物理學家,研究領域為熱輻射與電磁學等。1893年,維恩經由熱力學、光譜學、電磁學和光學等理論支援,發現了維恩位移定律,並應用於黑體等學術理論,揭開量子力學新領域。1911年,他因對於熱輻射等物理法則貢獻,而獲得諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和威廉·维恩 · 查看更多 »

威廉·肖克利

威廉·肖克利(William Shockley,),英国出生的美国物理学家和发明家,一生共获得90多项专利。 他和约翰·巴丁、沃尔特·布喇顿共同发明了晶体管。他并因此获得1956年的诺贝尔物理奖。20世纪50-60年代,他在推动晶体管商业化的同时,造就了加利福尼亚州今天电子工业密布的硅谷地区。.

新!!: 诺贝尔物理学奖得主列表和威廉·肖克利 · 查看更多 »

威利斯·兰姆

威利斯·兰姆(Willis Lamb, Junior,),美国物理学家,生於洛杉矶,1955年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和威利斯·兰姆 · 查看更多 »

宇宙加速膨脹

宇宙加速膨脹是宇宙的膨脹速度越來越快的現象。以天文學術語來說,就是宇宙標度因子 a(t) 的二次導數是正值,這意味著星系遠離地球的速度,隨著時間演進,應該會持續地增快。這速度是哈勃定律裏所提到的退行速度。於1998年觀測Ia超新星得到的數據,提示宇宙的膨脹速度正在加快。物理學者索尔·珀尔马特、布莱恩·施密特與亚当·里斯「透過觀測遙遠超新星而發現了宇宙加速膨脹」,因此,共同榮獲2006年邵逸夫天文學獎與2011年諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和宇宙加速膨脹 · 查看更多 »

宇宙微波背景辐射

#重定向 宇宙微波背景.

新!!: 诺贝尔物理学奖得主列表和宇宙微波背景辐射 · 查看更多 »

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

新!!: 诺贝尔物理学奖得主列表和宇宙線 · 查看更多 »

安东尼·休伊什

安东尼·休伊什,FRS(Antony Hewish,),生於英格蘭康沃爾郡福伊,英國射電天文學家,與馬丁·賴爾共同獲得1974年諾貝爾物理獎,以表彰他在射電合成孔徑的發展與脈衝星的發現等方面的贡献。休伊什也是1969年英國皇家天文學會愛丁頓獎章的得獎者。.

新!!: 诺贝尔物理学奖得主列表和安东尼·休伊什 · 查看更多 »

安德烈·海姆

安德烈·海姆,FRS(Андрей Константинович Гейм,Sir Andre Konstantin Geim,),俄罗斯裔荷兰藉与英国藉的物理学家,因为「在二维石墨烯材料的開創性實驗」而与其学生康斯坦丁·诺沃肖洛夫一同获2010年诺贝尔物理学奖。,並於2013年獲得科普利獎章。他是主任、曼彻斯特大学Langworthy研究教授、皇家学会2010周年研究教授。.

新!!: 诺贝尔物理学奖得主列表和安德烈·海姆 · 查看更多 »

安東尼·萊格特

安東尼·萊格特爵士,KBE,FRS(Sir Anthony Leggett,),英国物理学家,2003年获诺贝尔物理学奖。 萊格特教授在低溫物理的理論作為世界領先的廣泛認可。他塑造了正常和超流氦液體的理論,強耦合的超流體。他的研究方向涉及宏觀耗散系統和使用簡明系統中的量子物理量子力學測試的基礎。.

新!!: 诺贝尔物理学奖得主列表和安東尼·萊格特 · 查看更多 »

对称性 (物理学)

对称性(symmetry)是现代物理学中的一个核心概念,系统从一个状态到另一个状态,如果这两个状态等价,则说系统对这一变换是对称的。或者说给系统一个“操作”,如果系统从一个状态变到另一个等价的状态,则说系统对这一操作是对称的。它泛指「规范对称性」(gauge symmetry),或「局域对称性」(local symmetry)和「整体对称性」(global symmetry)。它是指一个理论的拉格朗日量或运动方程在某些变量的变化下的不变性。如果这些变量随时空变化,这个不变性被称为规范对称性,反之则被称为整体对称性。物理学中最简单的对称性例子是牛顿运动方程的伽利略变换不变性和麦克斯韦方程的洛伦兹变换不变性和相位不变性。 数学上,这些对称性由群论来表述。上述例子中的群分别对应着伽利略群,洛伦兹群和U(1)群。对称群为连续群和分立群的情形分别被称为「连续对称性」(continuous symmetry)和「離散對稱性」(discrete symmetry)。德国数学家外尔(Hermann Weyl)是把这套数学方法运用于物理学中并意识到规范对称重要性的第一人。1950年代杨振宁和米尔斯意识到规范对称性可以完全决定一个理论的拉格朗日量的形式,并构造了核作用的SU(2)规范理论。从此,规范对称性被大量应用于量子场论和粒子物理模型中。在粒子物理的标准模型中,强相互作用,弱相互作用和电磁相互作用的规范群分别为SU(3),SU(2)和U(1)。除此之外,其他群也被理论物理学家广泛地应用,如大统一模型中的SU(5),SO(10)和E_6群,超弦理论中的SO(32)和E_8\times E_8群。 整体对称性在粒子物理和量子场论的发展中也起着非常重要的角色,如强相互作用的手征对称性。规范和整体对称性破缺是粒子物理學和凝聚体物理学的重要概念。.

新!!: 诺贝尔物理学奖得主列表和对称性 (物理学) · 查看更多 »

对称性破缺

對稱性破缺(symmetry breaking)係指物理學裏,在具有某種對稱性的物理系統之臨界點附近發生的微小振盪,通過選擇所有可能分岔中的一個分岔,打破了這物理系統的對稱性,並且決定了這物理系統的命運。例如當水溫降至接近冰點時,水中各處看起來皆相同,因此水系統具有空間上的對稱性,此時若某處的溫度振盪至低於冰點,便破壞了對稱性,且決定了所凝固之冰的結構。對於外在觀察者,不清楚有漲落(或熱噪聲)的存在,會覺得這選擇相當隨機或任意。在圖樣形成(pattern formation)裏,對稱性破缺佔有重要角色。 對稱性破缺可以分為兩種:.

新!!: 诺贝尔物理学奖得主列表和对称性破缺 · 查看更多 »

密度

3 | symbols.

新!!: 诺贝尔物理学奖得主列表和密度 · 查看更多 »

小柴昌俊

小柴昌俊(,),日本物理学家,日本学士院会员。現任东京大学国际基本粒子物理中心(ICEPP)高级顾问,東京大學最初4名特別榮譽教授之一。勳一等旭日大綬章、文化勳章表彰。 1987年,小柴教授在超级神冈探测器完成人類史上首次的微中子發生觀測。2002年,小柴與戶塚洋二、梶田隆章三人同獲潘諾夫斯基實驗粒子物理學獎。同年因其“在天体物理学领域做出的先驱性贡献,其中包括在探测宇宙微中子和发现宇宙X射线源方面的成就”而获得诺贝尔物理学奖。 小柴教授是首位「雙博士」頭銜的日本人諾貝爾獎得主,此外亦是日本人第2位諾貝爾獎暨沃爾夫獎雙料得主。他的老師朝永振一郎、門生梶田隆章也都是諾貝爾物理學獎得主。.

新!!: 诺贝尔物理学奖得主列表和小柴昌俊 · 查看更多 »

小林诚 (物理学家)

小林诚(,),以研究CP破壞著名的日本物理学家,现为名古屋大學特別教授、高能加速器研究机构名誉教授、獨立行政法人理事及財團法人研究員(fellow)。文化勳章表彰。文化功勞者。 小林与益川敏英因共同提出小林-益川矩阵,可以解釋電荷宇稱不守恆的現象,並預測當時尚未發現的至少三族以上的夸克,而获得2008年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和小林诚 (物理学家) · 查看更多 »

尼古拉·巴索夫

#重定向 尼古拉·根纳季耶维奇·巴索夫.

新!!: 诺贝尔物理学奖得主列表和尼古拉·巴索夫 · 查看更多 »

尼古拉斯·布隆伯根

尼古拉斯·布隆伯根(Nicolaas Bloembergen,),出生于多德雷赫特的荷兰物理学家,1981年获诺贝尔物理学奖,亞利桑那大學教授。.

新!!: 诺贝尔物理学奖得主列表和尼古拉斯·布隆伯根 · 查看更多 »

尼尔斯·玻尔

尼尔斯·亨里克·达维德·玻尔(Niels Henrik David Bohr,),丹麦物理学家,1922年因“他對原子結構以及從原子發射出的輻射的研究”而榮获诺贝尔物理学奖。 玻尔發展出原子的玻尔模型。这一模型利用量子化的概念來合理地解释了氢原子的光谱。他还提出量子力学中的互补原理。20世纪20年代至30年代间量子力学及相关课题研究者的活动中心,哥本哈根大学的理论物理研究所(现名尼尔斯·玻尔研究所),也是由玻尔在1921年创办的。 20世纪30年代,玻尔积极帮助来自纳粹德国的流亡者。在纳粹德国占领丹麥后,玻尔与主持德国核武器开发计划的海森堡进行了一次著名会談。他在得知可能被德国人逮捕后,经由瑞典流亡至英国,並於該國参与了合金管工程。這是英国在曼哈顿计划中承擔的任務。战后,他呼吁各国就和平利用核能进行合作。他参与了欧洲核子研究组织及的创建,并于1957年成为的首任主席。为纪念玻尔,国际纯粹与应用化学联合会决定以他的名字命名107号元素,𨨏。.

新!!: 诺贝尔物理学奖得主列表和尼尔斯·玻尔 · 查看更多 »

射电天文学

無線電天文學是天文學的一個分支,通過電磁波頻譜以無線電頻率研究天體。無線電天文學的技術與光學相似,但是無線電望遠鏡因為觀察的波長較長,所以更為巨大。這個領域的起源肇因於發現多數的天體不僅輻射出可見光,也發射出無線電波。 从天体而来的无线电波的初步探测是在1930年代当卡尔·央斯基观察到从银河到来的辐射。随后观察已经确定了一些不同的无线电发射源。这些包括恒星和星系,以及全新的天体种类,如電波星系,类星体,脉冲星和微波激射器。宇宙微波背景辐射的发现被视为通过射电天文学而被做出大爆炸理论的证据。.

新!!: 诺贝尔物理学奖得主列表和射电天文学 · 查看更多 »

射电望远镜

射电望远镜(Radio telescope)是一个专门的天线和无线电接收机,在射电天文学用来接收天空中从天文射电源的无线电波。射电望远镜的外形差别很大,有固定在地面的单一口径的球面射电望远镜,有能够全方位转动的类似卫星接收天线的射电望远镜,有射电望远镜阵列,还有金属杆制成的射电望远镜。 1931年,美国贝尔实验室的央斯基用天线阵接收到了来自银河系中心的无线电波。随后美国人格羅特·雷伯在自家的后院建造了一架口径9.5米的天线,并在1939年接收到了来自银河系中心的无线电波,并且根据观测结果绘制了第一张射电天图。射电天文学从此诞生。雷伯使用的那架天线是世界上第一架专门用于天文观测的射电望远镜。 20世纪60年代天文学取得了四项非常重要的发现:脉冲星、类星体、宇宙微波背景辐射、星际有机分子,被称为“四大发现”。这四项发现都与射电望远镜有关。 天文望远镜的极限分辨率取决于望远镜的口径和观测所用的波长。口径越大,波长越短,分辨率越高。由于无线电波的波长要远远大于可见光的波长,因此射电望远镜的分辨本领远远低于相同口径的光学望远镜,而射电望远镜的天线又不能无限做大。这在射电天文学诞生的初期严重阻碍了射电望远镜的发展。 1962年,英国剑桥大学卡文迪许实验室的马丁·赖尔(Ryle)利用干涉的原理,发明了综合孔径射电望远镜,大大提高了射电望远镜的分辨率。其基本原理是:用相隔两地的两架射电望远镜接收同一天体的无线电波,两束波进行干涉,其等效分辨率最高可以等同于一架口径相当于两地之间距离的单口径射电望远镜。赖尔因为此项发明获得1974年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和射电望远镜 · 查看更多 »

崔琦

崔琦(),生於中國河南省寶豐縣,美籍华人物理学家,1998年诺贝尔物理学奖获得者。.

新!!: 诺贝尔物理学奖得主列表和崔琦 · 查看更多 »

巨磁阻效应

巨磁阻效应(Giant Magnetoresistance,缩写:GMR)是一种量子力学和凝聚体物理学现象,磁阻效应的一种,可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到。2007年诺贝尔物理学奖被授予发现巨磁阻效应(GMR)的彼得·格林贝格和艾尔伯·费尔。 这种结构物质的电阻值与铁磁性材料薄膜层的磁化方向有关,两层磁性材料磁化方向相反情况下的电阻值,明显大于磁化方向相同时的电阻值,电阻在很弱的外加磁场下具有很大的变化量。巨磁阻效应被成功地运用在硬碟生产上,具有重要的商业应用价值。.

新!!: 诺贝尔物理学奖得主列表和巨磁阻效应 · 查看更多 »

巴里·巴里什

巴里·克拉克·巴里什(Barry Clark Barish,),美国实验物理学家,任加州理工学院林德物理学教授。他是引力波领域的专家,并于2017年“因对LIGO探测器及引力波探测的决定性贡献”而与莱纳·魏斯及基普·索恩共同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和巴里·巴里什 · 查看更多 »

丁肇中

丁肇中(Samuel C. C. Ting,),生於美國密歇根州安娜堡,山东省日照市人,擁有美國及中華民國國籍,為臺裔美國人,物理学家,中央研究院、美国科学院院士及中國科學院外籍院士,現任美国麻省理工学院教授,曾获得1976年诺贝尔物理学奖。他曾發現一種新的次原子粒子,並把那種新粒子命名為“J粒子”。.

新!!: 诺贝尔物理学奖得主列表和丁肇中 · 查看更多 »

不變鋼

不變鋼(又稱因瓦合金、恆範鋼、殷瓦钢)是一種鎳鋼合金,是含鎳元素量36%的特殊鋼,由於其膨脹係數極小,在极低温度到超过室温的温度范围内都能保持固定长度(这种特性也被称为因瓦效应),適合做測量元件。 因瓦合金是瑞士科學家夏爾·紀堯姆在1896年發明,他也因此獲得了1920年的諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和不變鋼 · 查看更多 »

中子

| magnetic_moment.

新!!: 诺贝尔物理学奖得主列表和中子 · 查看更多 »

中子衍射技术

中子衍射技术是研究晶体学的方法,用来确定某个材料的原子结构或磁性结构。这也是弹性散射的一种,离开中子具有入射中子相同或略低的能量。这个技术与X射线衍射法类似,其主要差别在于放射源不同,这两种技术可以互为补充。.

新!!: 诺贝尔物理学奖得主列表和中子衍射技术 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 诺贝尔物理学奖得主列表和中微子 · 查看更多 »

中微子振荡

中微子振荡(Neutrino oscillation)是一个量子力学现象,是指微中子在生成時所伴隨的輕子(包括電子、渺子、陶子)味可在之後轉化成不同的味,而被測量出改變。當微中子在空間中傳播時,測到微中子帶有某個味的機率呈現週期性變化。 理论物理学家布鲁诺·庞蒂科夫最先於1957年提出此猜想。 reproduced and translated in and reproduced and translated in 爾後一連串的各种實驗皆觀察到此一現象。微中子振盪也是长期未解决的太陽微中子問題的解答。 中微子振荡无论对理论物理还是实验物理而言都是相当重要的。因为这意味着中微子具有非零的靜質量,这与原始版本的粒子物理标准模型不相吻合。 由於发现了微中子振盪現象存在的證明,並取得微中子質量數據,日本超級神岡探測器的梶田隆章以及加拿大薩德伯里微中子觀測站的阿瑟·麥克唐納兩人獲頒2015年諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和中微子振荡 · 查看更多 »

中村修二

中村修二(,),生於日本愛媛縣的日裔美國公民,專業為电子工程學家,商業用高亮度藍色發光二極體與青紫色激光二極管的發明者,世稱「藍光之父」。現任美國加州大學聖塔芭芭拉分校教授、愛媛大學客座教授。文化勳章獲得者。文化功勞者。 2014年,中村凭借「發明高亮度藍色發光二極體,帶來節能明亮的白色光源」与赤崎勇、天野浩共同获得诺贝尔物理学奖,晉身繼南部陽一郎之後的第2位美國籍日裔諾貝爾獎得主。 中村是日本唯一同時擁有諾貝爾獎、富蘭克林獎章、查爾斯·斯塔克·德雷珀獎、、這5大榮譽的科學家。.

新!!: 诺贝尔物理学奖得主列表和中村修二 · 查看更多 »

希格斯机制

在標準模型裏,希格斯機制(Higgs mechanism)是一種生成質量的機制,能夠使基本粒子獲得質量。為什麼費米子、W玻色子、Z玻色子具有質量,而光子、膠子的質量為零?希格斯機制可以解釋這問題。希格斯機制應用自發對稱性破缺來賦予規範玻色子質量。在所有可以賦予規範玻色子質量,而同時又遵守規範理論的可能機制中,這是最簡單的機制。根據希格斯機制,希格斯場遍佈於宇宙,有些基本粒子因為與希格斯場之間交互作用而獲得質量。 更仔細地解釋,在规范场论裏,為了滿足定域規範不變性,必須設定规范玻色子的质量為零。由於希格斯場的真空期望值不等於零,希格斯場在最低能量態的平均值,就是「希格斯場的真空期望值」。費曼微積分(Feymann calculus)用來計算的是希格斯場在最低能量態的振動,即希格斯玻色子。造成自發對稱性破缺,因此規範玻色子會獲得質量,同時生成一種零質量玻色子,稱為戈德斯通玻色子,而希格斯玻色子則是伴隨著希格斯場的粒子,是希格斯場的振動。通過選擇適當的規範,戈德斯通玻色子會被抵銷,只存留帶質量希格斯玻色子與帶質量規範向量場。 費米子也是因為與希格斯場相互作用而獲得質量,但它們獲得質量的方式不同於W玻色子、Z玻色子的方式。在规范场论裏,為了滿足定域規範不變性,必須設定費米子的质量為零。通過湯川耦合,費米子也可以因為自發對稱性破缺而獲得質量。 本條目的數學表述內容需要讀者了解一些量子場論的知識。所有方程式都遵守愛因斯坦求合約定。按照粒子物理學慣例,採用CGS單位制為物理量的單位,並且設定光速與約化普朗克常數的數值為1。.

新!!: 诺贝尔物理学奖得主列表和希格斯机制 · 查看更多 »

布赖恩·约瑟夫森

布赖恩·约瑟夫森(Brian Josephson,),英国物理学家,犹太人,生于威尔士卡地夫。 在22岁,尚是一个博士生时,他就提出约瑟夫森结这一概念,并凭此赢得1973年诺贝尔物理学奖。从2007年秋天起,他将从剑桥大学退休。.

新!!: 诺贝尔物理学奖得主列表和布赖恩·约瑟夫森 · 查看更多 »

帕维尔·阿列克谢耶维奇·切连科夫

帕维尔·阿列克谢耶维奇·切连科夫(Па́вел Алексе́евич Черенко́в,),苏联物理学家,曾发现切连科夫辐射并因此获得1958年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和帕维尔·阿列克谢耶维奇·切连科夫 · 查看更多 »

帕特里克·布萊克特

#重定向 帕特里克·布莱克特.

新!!: 诺贝尔物理学奖得主列表和帕特里克·布萊克特 · 查看更多 »

干涉 (物理学)

干涉(interference)在物理学中,指的是兩列或两列以上的波在空间中重疊時发生叠加,从而形成新波形的現象。 例如采用分束器将一束单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的波动性的重要依据 ,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。 为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:阿尔伯特·迈克耳孙就借助迈克耳孙干涉仪完成了著名的迈克耳孙-莫雷实验,得到了以太风观测的零结果。迈克耳孙也利用此干涉仪測得的精確長度,並因此獲得了1907年的諾貝爾物理學獎。而在二十世纪六十年代之后,激光这一高强度相干光源的发明使光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到激光干涉仪的身影。现在人们知道,两束电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的波粒二象性,光的干涉也是光子自身的几率幅叠加的结果。.

新!!: 诺贝尔物理学奖得主列表和干涉 (物理学) · 查看更多 »

乔治·埃尔伍德·史密斯

#重定向 乔治·史密斯.

新!!: 诺贝尔物理学奖得主列表和乔治·埃尔伍德·史密斯 · 查看更多 »

乔治·夏帕克

乔治·夏帕克(Georges Charpak,),法国物理学家,1992年诺贝尔物理学奖獲獎者。,法國國際廣播電台,2010年9月30日.

新!!: 诺贝尔物理学奖得主列表和乔治·夏帕克 · 查看更多 »

乔治·汤姆孙

乔治·汤姆孙爵士,FRS(Sir George Thomson,),又稱G.

新!!: 诺贝尔物理学奖得主列表和乔治·汤姆孙 · 查看更多 »

乔治·斯穆特

乔治·菲茨杰拉德·斯穆特三世(George Fitzgerald Smoot III,),美国天体物理学家、宇宙学家,伯克利加州大学物理学教授、香港科技大學高等研究院趙氏廷箴懷芳教授。乔治·斯穆特和约翰·马瑟因“发现了宇宙微波背景辐射的黑体形式和各向异性”而分享了2006年诺贝尔物理学奖。 這個使用COBE(Cosmic Background Explorer 宇宙背景探測)衛星的工作,有助於鞏固宇宙大爆炸理论。據諾貝爾獎委員會的記載,"此 COBE 計畫,堪稱是宇宙學步入精確科學的一個起點".

新!!: 诺贝尔物理学奖得主列表和乔治·斯穆特 · 查看更多 »

亚历山大·普罗霍罗夫

#重定向 亚历山大·米哈伊洛维奇·普罗霍罗夫.

新!!: 诺贝尔物理学奖得主列表和亚历山大·普罗霍罗夫 · 查看更多 »

亨德里克·洛伦兹

亨德里克·安东·洛伦兹(Hendrik Antoon Lorentz,),荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并於1881年当选荷蘭皇家藝術與科學學院院士,同时还曾担任多国科学院外籍院士。 洛伦兹以其在电磁学与光学领域的研究工作闻名于世。他通过连续电磁场以及物质中离散电子等概念得到了经典电子理论。这一理论可以在许多问题中派上用场:比如电磁场对运动的带电粒子的作用力(洛伦兹力)、介质的折射率与其密度的关系(洛伦兹-洛伦茨方程)、光色散理论、对于一些磁学现象的解释(比如塞曼效应)以及金属的部分性质。在电子理论的基础上,他还发展了运动介质中的电动力学,其中包括提出了物体在其运动方向上会发生长度收缩的假说(洛伦兹-斐兹杰惹收缩)、引入了“局部时”的概念、获得了质量与速度之间的关系并构造了表述不同惯性系间坐标和时间关系的方程组(洛伦兹变换)。洛伦兹的研究工作后来成为狭义相对论与量子物理的基础。此外,洛伦兹在热力学、分子运动论、广义相对论以及热辐射理论等方面也有建树。.

新!!: 诺贝尔物理学奖得主列表和亨德里克·洛伦兹 · 查看更多 »

亨利·贝可勒尔

亨利·贝可勒尔(Henri Becquerel,),法国物理学家。因发现天然放射性现象,与居里夫妇一同获得1903年诺贝尔物理学奖。 受伦琴发现X-射线的启发,貝可勒爾在研究鈾和鉀的雙硫酸鹽的磷光现象。他讓這兩樣材料曝露於陽光,然後用黑紙把曝光過的材料和感光底片包在一起。一段時間后,沖洗底片,底片上顯示出鈾晶體的影像。貝可勒爾推测:「材料所發出的磷光射线能穿過不透光的紙張」。剛開始時他以為是晶体吸收太陽的能量,然後發出X射線。 在1896年2月26日和2月27日,貝可勒爾本打算把包好的鈾和感光底片曬太陽,但巴黎多云,阳光时断时续,没有达到理想的实验效果,于是他把材料送回抽屜避光保存。之后几天都是阴天,也未能进行阳光激发实验。到了3月1日他沖洗底片,因为阳光激发的时间不长,所以他预计磷光强度会很弱,只能看到模糊的影像,想不到卻看到非常清晰的影像,使他大為驚訝。进一步的实验显示:鈾不需要外來的能源如陽光也能發射輻射,因此他發現了放射性,從材料中自發的發出輻射。.

新!!: 诺贝尔物理学奖得主列表和亨利·贝可勒尔 · 查看更多 »

亨利·肯德尔

亨利·韦·肯德尔(Henry Way Kendall,),出生于波士顿,美国物理学家,1990年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和亨利·肯德尔 · 查看更多 »

康斯坦丁·诺沃肖洛夫

康斯坦丁·诺沃肖洛夫(Константин Новосёлов,Sir Konstantin Sergeevich "Kostya" Novoselov,),拥有俄罗斯、英国双重国籍的物理学家,於莫斯科物理技術學院及奈梅亨拉德伯德大学博士學位畢業,為曼彻斯特大学教授,因為「在二维石墨烯材料的開創性實驗」而与其導師安德烈·海姆一同获得2010年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和康斯坦丁·诺沃肖洛夫 · 查看更多 »

云室

雲室是個用來偵測游離輻射的粒子偵測器。由英國物理學家查爾斯·威耳遜發明,因此又稱為威爾遜雲室。最簡單的雲室,只是一個密封的環境,裡面充滿過飽和的水蒸氣或酒精。當一束帶電粒子(α粒子或β粒子)與雲室內的混合物相互作用時,會將混合物離子化,造成的離子會扮演雲凝結核的角色,使離子的周圍產生霧氣(因為這些混合物剛好正處於凝結點)。帶電荷粒子走過的時候,會產生很多離子,所以就留下了它們走過的軌跡。這些軌跡的形狀獨特(如α粒子的軌跡較闊,顯示出碰撞造成的彎轉痕跡,β粒子較細與直)。當施加垂直的均勻磁場於雲室時,這些帶電粒子會偏轉,帶正電的偏轉向一邊,帶負電的會偏轉向另一邊,遵守洛侖茲力定律。 雲室對早期次原子研究是非常重要的,但目前已被其他粒子檢測器所取代,例如氣泡室。.

新!!: 诺贝尔物理学奖得主列表和云室 · 查看更多 »

介子

介子是自旋为整数、重子数为零的强子,参与强相互作用。介子属于强子类。它是比电子重的带电或不带电的粒子。 根据夸克模型,介子是由一个夸克和一个反夸克组成的束缚态,这一对夸克和反夸克可以是不同味的,例如π+=(ud¯),π-=(ūd),J/ψ=(cc),F=(cs)等。 自旋为0的介子,在量子场论中是用标量波函数描述,根据其宇称为-1或+1分别称为赝标介子和标量介子。自旋为1的介子,在量子场论中是用矢量波函数描述,根据其宇称为-1或+1分别称为矢量介子或轴矢介子。根据其内部量子数,已发现的介子可分为非奇异介子(π、ρ、J/ψ等)、奇异介子(K、Q、K*等)、粲-非奇异介子(D)、粲-奇异介子(F)、底-非奇异介子(B)等。.

新!!: 诺贝尔物理学奖得主列表和介子 · 查看更多 »

伊利亚·弗兰克

#重定向 伊利亚·米哈伊洛维奇·弗兰克.

新!!: 诺贝尔物理学奖得主列表和伊利亚·弗兰克 · 查看更多 »

伊瓦尔·贾埃弗

伊瓦尔·贾埃弗(挪威语:Ivar Giæver,),挪威物理学家。.

新!!: 诺贝尔物理学奖得主列表和伊瓦尔·贾埃弗 · 查看更多 »

伊西多·拉比

伊西多·艾薩克·拉比(Isidor Isaac Rabi,出生名為以色列·拉比,),美國猶太人物理學家,因發現核磁共振(NMR)而獲得1944年的諾貝爾物理學獎,而核磁共振成像(MRI)就是基於核磁共振技術的。他也是其中一個最早研究多腔磁控管的美國科學家,多腔磁腔管可用於微波雷達和微波爐。.

新!!: 诺贝尔物理学奖得主列表和伊西多·拉比 · 查看更多 »

伊戈尔·塔姆

#重定向 伊戈尔·叶夫根耶维奇·塔姆.

新!!: 诺贝尔物理学奖得主列表和伊戈尔·塔姆 · 查看更多 »

伯特伦·布罗克豪斯

伯特伦·内维尔·布罗克豪斯(Bertram Neville Brockhouse,),加拿大物理学家,1994年诺贝尔物理学奖获得者。 布罗克豪斯出生於莱斯布里奇,1947年在不列颠哥伦比亚大学获文学学士、1948年和1950年在多伦多大学获文学硕士和哲学博士。 1950年至1962年,布罗克豪斯在加拿大原子能公司的乔克里弗实验室工作。1962年,布罗克豪斯成为麦克马斯特大学的教授直至1984年退休。 1994年,布罗克豪斯因与克利福德·沙尔在中子衍射研究中取得进展而共同获得了诺贝尔物理学奖。1982年,布罗克豪斯还获得了加拿大勋章。 2003年病逝於安大略省哈密尔顿。 2005年10月,作为麦克马斯特大学75周年庆典的一部分,安大略省哈密尔顿的大学大道被重新命名为布罗克豪斯大道。.

新!!: 诺贝尔物理学奖得主列表和伯特伦·布罗克豪斯 · 查看更多 »

伯顿·里克特

伯顿·里克特(Burton Richter,),美国物理学家,1984年到1999年間擔任SLAC國家加速器實驗室主任。里克特帶領SLAC國家加速器實驗室團隊與另一個由丁肇中帶領的布魯克黑文國家實驗室團隊,同時發現J/ψ介子,並於1974年11月發表成果,這項發現造成粒子物理學上的「十一月革命」,隨後在1976年里克特與丁肇中共同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和伯顿·里克特 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

新!!: 诺贝尔物理学奖得主列表和弱相互作用 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

新!!: 诺贝尔物理学奖得主列表和强相互作用 · 查看更多 »

伽博·丹尼斯

#重定向 加博尔·德奈什.

新!!: 诺贝尔物理学奖得主列表和伽博·丹尼斯 · 查看更多 »

弗里茨·泽尔尼克

弗里茨·塞尔尼克(Frits Zernike,),荷兰物理学家,1953年因相襯顯微技術而获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和弗里茨·泽尔尼克 · 查看更多 »

弗雷德里克·莱因斯

弗雷德里克·莱因斯(Frederick Reines,),美国物理学家,加州大学尔湾分校教授,因为对中微子检测的贡献获1995年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和弗雷德里克·莱因斯 · 查看更多 »

弗朗克·韦尔切克

弗兰克·安东尼·维尔切克(Frank Anthony Wilczek,),美国理论物理学家,現任麻省理工学院物理系教授。西屋科学奖获得者,大学毕业于芝加哥大学。在普林斯顿大学读博士期间,他和他的导师戴维·格娄斯发现了量子色动力学中的渐近自由,他们因此获得了2004年诺贝尔物理学奖。他在粒子物理学和凝聚体物理学都有所建树。.

新!!: 诺贝尔物理学奖得主列表和弗朗克·韦尔切克 · 查看更多 »

弗朗索瓦·恩格勒

弗朗索瓦·恩格勒(François Englert,),比利時理論物理學家,在粒子物理學做出重要貢獻。 1964年,恩格勒和羅伯特·布繞特共同提出希格斯機制與希格斯玻色子理論。另外還有兩個研究小組也在同年獨立地提出類似結果,一組為傑拉德·古拉尼、卡爾·哈庚、湯姆·基博爾,另一組為彼得·希格斯。六位物理學者分別發表的三篇論文, 在《物理評論快報》50周年慶祝文獻裏被公認為里程碑論文。 恩格勒的主要研究領域為統計力學、量子場論、宇宙學、弦理論、超引力,並且作出貢獻。恩格勒、希格斯與歐洲核子研究組織共同獲得2013年阿斯图里亚斯亲王科學技術奖。 因為「次原子粒子質量的生成機制理論,促進了人類對這方面的理解,近來經歐洲核子研究組織屬下大型強子對撞機的超環面儀器及緊湊緲子線圈探測器所發現基本粒子而獲得證實」,恩格勒、希格斯共同獲授2013年諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和弗朗索瓦·恩格勒 · 查看更多 »

休·波利策

休·波利策(Hugh Politzer,),出生于纽约,美国物理学家,2004年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和休·波利策 · 查看更多 »

异质结

半导体的异质結是一种特殊的PN結,由两层以上不同的半导体材料薄膜依次沉积在同一基座上形成,这些材料具有不同的能带隙,它们可以是砷化镓之类的化合物,也可以是硅-锗之类的半导体合金。 半导体异质结构的二极管特性非常接近理想二极管。另外,通过调节半导体各材料层的厚度和能带隙,可以改变二极管电流与电压的响应参数。半导体异质结构对半导体技术具有重大影响,是高频晶体管和光电子器件的关键成分。.

新!!: 诺贝尔物理学奖得主列表和异质结 · 查看更多 »

彼得·卡皮查

#重定向 彼得·列昂尼多维奇·卡皮察.

新!!: 诺贝尔物理学奖得主列表和彼得·卡皮查 · 查看更多 »

彼得·塞曼

彼得·塞曼(Pieter Zeeman,,),荷兰物理学家。1885年进入莱顿大学在亨德里克·洛伦兹和海克·卡末林·昂內斯的指导下学习物理,1893年取得博士学位。1896年塞曼发现了原子光谱在磁场中的分裂现象,被命名为塞曼效应。随后,洛伦兹在理论上对这种现象进行了解释。二人因此被授予1902年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和彼得·塞曼 · 查看更多 »

彼得·希格斯

彼得·威爾·希格斯,CH,FRS,FRSE(Peter Ware Higgs,),英國理論物理學家,愛丁堡大學榮譽退休教授Griggs, Jessica.

新!!: 诺贝尔物理学奖得主列表和彼得·希格斯 · 查看更多 »

彼得·格林贝格

彼得·安德烈亚斯·格林贝格(Peter Andreas Grünberg,),德国物理学家,主要研究固態物理学,因发现巨磁阻效應与阿尔贝·费尔共同获得2007年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和彼得·格林贝格 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 诺贝尔物理学奖得主列表和德国 · 查看更多 »

保罗·狄拉克

保羅·埃德里安·莫里斯·狄拉克,OM,FRS(Paul Adrien Maurice Dirac,),英国理論物理學家,量子力學的奠基者之一,曾經主持劍橋大學的盧卡斯數學教授席位,並在佛羅里達州立大學度過他人生的最後十四個年頭。 狄拉克在物理學上有諸多開創性的貢獻。他統合了維爾納·海森堡的矩陣力學和埃爾溫·薛定谔的波動力學,發展出了量子力學的基本數學架構。他給出的狄拉克方程式可以描述费米子的物理行為,解釋了粒子的自旋,並且首先預測了反粒子的存在。而他在路徑積分和二次量子化也扮演了的先驅者的角色,為後來量子電動力學的發展奠定了重要的基礎。此外,他將拓扑的概念引入物理學,提出了磁單極的理論。 1933年,因為“發現了在原子理論裡很有用的新形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程),狄拉克和薛丁格共同获得了诺贝尔物理学奖,是當時史上最年輕獲獎的理論物理學家。.

新!!: 诺贝尔物理学奖得主列表和保罗·狄拉克 · 查看更多 »

國籍

國籍是指一個人屬於一個國家國民的法律資格,也是國家實行外交保護的依據。各國將國籍做為立法的重要內容,是從十八世紀末,十九世紀初開始的。《世界人權宣言》第十五條規定:「人人有權享有國籍。任何人的國籍不得任意剝奪,亦不得否認其改變國籍的權利。.

新!!: 诺贝尔物理学奖得主列表和國籍 · 查看更多 »

利奥·雷恩沃特

利奥·雷恩沃特(Leo Rainwater,1917年12月9日爱达荷州 - 1986年5月31日),美国物理学家,1975年,因為發現原子核中集體運動和粒子運動之間的聯繫,並且根據這種聯繫發展了有關原子核結構的理論,與奥格·玻尔、本·莫特森共同榮获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和利奥·雷恩沃特 · 查看更多 »

利昂·库珀

利昂·库珀(Leon Cooper,1930年2月28日纽约),美国物理学家,布朗大學物理系教授。1972年,因為與約翰·巴丁、约翰·施里弗聯合創立了超導微觀理論,即常說的BCS理論,共同榮获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和利昂·库珀 · 查看更多 »

利昂·萊德曼

利昂·莱德曼(Leon Lederman,),美国物理学家,1988年诺贝尔物理学奖获得者。.

新!!: 诺贝尔物理学奖得主列表和利昂·萊德曼 · 查看更多 »

列夫·朗道

#重定向 朗道.

新!!: 诺贝尔物理学奖得主列表和列夫·朗道 · 查看更多 »

切连科夫效应

#重定向 契忍可夫輻射.

新!!: 诺贝尔物理学奖得主列表和切连科夫效应 · 查看更多 »

傑克·基爾比

傑克·基爾比(Jack Kilby,),美国物理学家,積體電路的两位發明人之一(另一位是罗伯特·诺伊斯),德州仪器的工程師,其於1958年發明積體電路,JK正反器即以其名字命名。.

新!!: 诺贝尔物理学奖得主列表和傑克·基爾比 · 查看更多 »

唐纳德·格拉泽

唐纳德·格拉泽(Donald Arthur Glaser,全称唐纳德·阿瑟·格拉泽,),美国物理学家,1960年獲得诺贝尔物理学奖。 1926年出生于俄亥俄州克利夫兰。1950年获得加州理工学院物理和数学博士学位。他提出了气泡室理论,因此获得1960年诺贝尔物理学奖。之后转入分子生物学研究,发明了聚合酶链式反应,扩增DNA。1980年代,转向神经生物学。.

新!!: 诺贝尔物理学奖得主列表和唐纳德·格拉泽 · 查看更多 »

内维尔·莫特

内维尔·弗朗西斯·莫特爵士,CH,FRS(Sir Nevill Francis Mott,),英国物理学家,1977年,因為對磁性和無序體系電子結構的基礎性理論研究,與菲利普·安德森、約翰·凡扶累克共同榮获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和内维尔·莫特 · 查看更多 »

凝聚态物理学

凝聚态物理学專門研究物质凝聚相的物理性质。该领域的研究者力图通过物理学定律来解释凝聚相物质的行为。其中,量子力学、电磁学以及统计力学的相关定律对于该领域尤为重要。 固相以及液相是人们最为熟悉的凝聚相。除了这两种相之外,凝聚相还包括一些特定的物质在低温条件下的超导相、自旋有关的铁磁相及反铁磁相、超低温原子系统的玻色-爱因斯坦凝聚相等等。对于凝聚态的研究包括通过实验手段测定物质的各种性质,以及利用理论方法发展数学模型以深入理解这些物质的物理行为。 由于尚有大量的系统及现象亟待研究,凝聚态物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一,凝聚态物理学部也是美国物理学会最大的部门。此外,该领域还与化学,材料科学以及纳米技术等学科领域交叉,并与原子物理学以及生物物理学等物理学分支紧密相关。该领域研究者在理论研究中所采用的一些概念与方法也适用于粒子物理学及核物理学等领域。 晶体学、冶金学、弹性力学以及磁学等等起初是各自独立的学科领域。这些学科在二十世纪四十年代被物理学家统合为固体物理学。时间进入二十世纪六十年代后,有关液体物理性质的研究也被纳入其中,形成凝聚态物理学这一新学科。据物理学家菲利普·安德森所述,术语“凝聚态物理学”是他和首创。1967年,他们把位于卡文迪许实验室的研究组名称由“固体理论”改为“凝聚态理论”。二人觉得原来的名称并没有涵盖液体及等方面研究。但是,“凝聚态”这一术语此前已在欧洲学界出现,只是由他们普及而已。较为著名的例子是施普林格公司于1963年创建的期刊《凝聚态物理学》(Physics of Condensed Matter)。二十世纪六、七十年代的资金环境以及各国政府采取的冷战政策促使相关领域物理学家接纳了“凝聚态物理学”这一术语。他们认为这一术语相对于“固体物理学”而言更为突出了固体、液体、等离子体以及其他复杂物质研究之间的共通性。这些研究与金属和半导体在工业上的应用息息相关。贝尔实验室是最早开展凝聚态物理学研究项目的研究机构之一。 “凝聚态”这一术语在更早的文献中即已出现。例如,在1947年出版的由雅科夫·弗伦克尔撰写的专著《液体动力学理论》(Kinetic theory of liquids)的绪论中,他提出:“液体动力学理论日后也将发展为固体动力学理论的推广与延伸。实际上,更为正确的做法或许是将液体与固体统归为‘--’。”.

新!!: 诺贝尔物理学奖得主列表和凝聚态物理学 · 查看更多 »

凯·西格巴恩

凯·曼内·伯耶·西格巴恩(瑞典语:Kai Manne Börje Siegbahn,)是瑞典物理学家及1981年諾貝爾物理學獎得獎者之一。他的父亲曼内·西格巴恩曾获1924年诺贝尔物理学奖。 凱·西格巴恩出生於隆德,1944年於斯德哥爾摩大學獲博士學位,1951年至1954年於皇家工學院任教授,1954年轉到乌普萨拉大学任實驗物理學教授至1984年。1981年他與尼古拉斯·布隆伯根及阿瑟·伦纳德·肖洛因為在光譜學(X射线光电子能谱学)的成就而共同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和凯·西格巴恩 · 查看更多 »

全息摄影

全像術(Holography),又稱--,是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者透射的光线可以通过记录胶片完全重建,仿佛物体就在那里一样。通过不同的方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的像可以使人产生立体视觉。.

新!!: 诺贝尔物理学奖得主列表和全息摄影 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

新!!: 诺贝尔物理学奖得主列表和光学 · 查看更多 »

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

新!!: 诺贝尔物理学奖得主列表和光學頻譜 · 查看更多 »

光導纖維

光導纖維(Optical fiber),簡稱光纖,是一種由玻璃或塑料製成的纖維,利用光在這些纖維中以全反射原理傳輸的光傳導工具。微細的光纖封裝在塑料護套中,使得它能夠彎曲而不至於斷裂。通常光纖的一端的發射裝置使用發光二極體或一束激光將光脈衝傳送至光纖中,光纖的另一端的接收裝置使用光敏元件檢測脈衝。包含光纖的线缆称为光缆。由於信息在光導纖維的傳輸損失比電在電線傳導的損耗低得多,更因為主要生產原料是硅,蘊藏量極大,較易開採,所以價格很便宜,促使光纖被用作長距離的信息傳遞媒介。隨著光纖的價格進一步降低,光纖也被用於醫療和娛樂的用途。 光纖主要分為兩類,與。前者的折射率是漸變的,而後者的折射率是突變的。另外還分為單模光纖及多模光纖。近年來,又有新的光子晶體光纖問世。 光导纤维是双重构造,核心部分是高折射率玻璃,表层部分是低折射率的玻璃或塑料,光在核心部分傳輸,并在表层交界处不断进行全反射,沿“之”字形向前傳輸。这种纤维比头发稍粗,这样细的纤维要有折射率截然不同的双重结构分布,是一个非常惊人的技术。各国科学家经过多年努力,创造了内附着法、MCVD法、VAD法等等,制成了超高纯石英玻璃,特制成的光导纤维傳輸光的效率有了非常明显的提高。现在较好的光导纤维,其光傳輸損失每公里只有零点二分贝;也就是说传播一公里后只損4.5%。.

新!!: 诺贝尔物理学奖得主列表和光導纖維 · 查看更多 »

光电效应

光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.

新!!: 诺贝尔物理学奖得主列表和光电效应 · 查看更多 »

光谱学

光谱学(Spectroscopy)是研究物质发射、吸收或散射的光、声或粒子来研究物质的方法。 光谱学也可以被定义为研究光和物质之间相互作用的学科。历史上,光谱学指用可见光来对物质结构的理论研究和定量和定性的分析的科学分支。但是,近来,光谱学的定义已经被扩展为一种不只用可见光,也用许多其他电磁或非电磁辐射(如微波,无线电波,X射线,电子,声子(声波)等)的新技术。阻抗光谱学则研究交流电的频率响应。 光谱学被频繁的用在物理和分析化学中,通过发射或吸收光谱来鉴定物质。一种记录光谱的仪器叫分光计。光谱学可以通过其测量或计算的物理属性或测量过程来分类。 光谱学也同样大量运用在天文学和遥感。大多数大型天文望远镜配有光谱摄制仪,用来测量天体的化学组成和物理属性,或通过测量光谱线的多普勒偏移来测量天体的速度。.

新!!: 诺贝尔物理学奖得主列表和光谱学 · 查看更多 »

克劳斯·冯·克利青

克劳斯·冯·克利青(Klaus von Klitzing,),德国物理学家。 他因于1980年2月5日在格勒诺布尔高强度磁场实验室发现量子霍尔效应而获1985年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和克劳斯·冯·克利青 · 查看更多 »

克利福德·沙尔

克利福德·沙尔(Clifford Shull,),美国物理学家,1994年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和克利福德·沙尔 · 查看更多 »

克林顿·戴维孙

柯林頓·戴維森(Clinton Davisson,),美国物理学家,曾在贝尔实验室長期工作。他與雷斯特·革末,在戴維森-革末實驗裏,共同合作發現電子繞射現象。因此,戴維森和喬治·湯姆森於 1937 年一起榮获诺贝尔物理学奖。湯姆森也在同時獨立地發現電子繞射現象。.

新!!: 诺贝尔物理学奖得主列表和克林顿·戴维孙 · 查看更多 »

克洛德·科昂-唐努德日

克洛德·科昂-唐努德日(Claude Cohen-Tannoudji,),法国物理学家、巴黎高等師範學院教授。1979年獲英國物理學會楊氏獎。由於「發展了用雷射冷卻和捕獲原子的方法」,與朱棣文和威廉·丹尼爾·菲利普斯一同獲得1997年的諾貝爾物理獎。.

新!!: 诺贝尔物理学奖得主列表和克洛德·科昂-唐努德日 · 查看更多 »

回旋加速器

迴旋加速器是一種粒子加速器。迴旋加速器通過高頻交流電壓來加速帶電粒子。大小從數英吋到數公尺都有。它是由欧内斯特·劳伦斯於1929年在柏克萊加州大學發明。 許多原子核、基本粒子的性質有關的資訊,均是利用高能粒子轟擊原子靶(atomic target)而獲得的。1932年,約翰·柯克勞夫與歐內斯特·沃吞在英國製造了第一台「原子擊破器」(atom smasher)。他們乃是利用700,000V的高電壓對質子加速,然後再拿它們轟擊鋰靶。 他們採用的方法雖然較為野蠻,但確實是建構出了這麼個高電壓。在1929年時,勞倫斯就已經考慮過這種可能性:將粒子重複地經由一「相對小電壓」做加速,而不是一次就用一個巨大電壓去做加速。他於是與李明斯頓(M.S.Livingston)合作,發展出了迴旋加速器(cyclotron)。第一部迴旋加速器建於1930年,稍後的改良則於1934年完成。 回旋加速器的基本构成是两个处于磁场中的半圆D型盒和D型盒之间的交变电场。带电粒子在电场的作用下加速进入磁场,由于受到洛伦兹力F.

新!!: 诺贝尔物理学奖得主列表和回旋加速器 · 查看更多 »

固体物理学

固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。.

新!!: 诺贝尔物理学奖得主列表和固体物理学 · 查看更多 »

BCS理论

BCS理论是解释常规超导体的超导电性的微观理论(所以也常意译为超导的微观理论)。该理论以其发明者约翰·巴丁、利昂·库珀和约翰·施里弗的名字首字母命名。.

新!!: 诺贝尔物理学奖得主列表和BCS理论 · 查看更多 »

CP破壞

CP破壞又稱CP不守恒,是物理学,尤其是粒子物理学中的一个术语和定理。它说明在一个物理过程中所谓的CP对称被破坏了。在宇宙学中它对解释今天宇宙中物质的数量超过反物质的数量有极其重要的意义。1964年在CP破坏首先在中性K介子的衰变中被实验证实。1980年詹姆斯·克罗宁和瓦尔·菲奇因此被授予诺贝尔物理学奖。至今为止对CP破壞的研究依然是一个在理论物理和试验物理中非常活跃的领域。.

新!!: 诺贝尔物理学奖得主列表和CP破壞 · 查看更多 »

皮埃尔-吉勒·德热纳

埃尔-吉勒·德热纳(Pierre-Gilles de Gennes,),法国物理学家,1991年获诺贝尔物理学奖。2007年5月18日於奥赛逝世。.

新!!: 诺贝尔物理学奖得主列表和皮埃尔-吉勒·德热纳 · 查看更多 »

皮埃尔·居里

埃爾·居里(Pierre Curie,),法國物理学家、化学家,曾經由於發現放射性元素鐳而獲得諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和皮埃尔·居里 · 查看更多 »

石墨烯

石墨烯(Graphene)是一種由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯一直被認為是假設性的結構,無法單獨穩定存在,直至2004年,英国曼彻斯特大学物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地在實驗中從石墨中分離出石墨烯,而證實它可以單獨存在,兩人也因「在二维石墨烯材料的開創性實驗」為由,共同獲得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄卻也是最堅硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光;導熱系數高達5300 W/m·K,高於碳纳米管和金刚石,常溫下其電子遷移率超過15000 cm2/V·s,又比纳米碳管或矽晶體(monocrystalline silicon)高,而電阻率只約10-6 Ω·cm,比銅或銀更低,為目前世上電阻率最小的材料 。因為它的電阻率極低,電子的移动速度極快,因此被期待可用來發展出更薄、導電速度更快的新一代電子元件或電晶體。由於石墨烯實質上是一種透明、良好的導體,也適合用來製造透明觸控螢幕、光板、甚至是太陽能電池。 石墨烯另一個特性,是能夠在常溫下觀察到量子霍爾效應。.

新!!: 诺贝尔物理学奖得主列表和石墨烯 · 查看更多 »

玻色-爱因斯坦凝聚态

#重定向 玻色–爱因斯坦凝聚.

新!!: 诺贝尔物理学奖得主列表和玻色-爱因斯坦凝聚态 · 查看更多 »

玛丽·居里

玛丽亚·斯克沃多夫斯卡-居里(Maria Skłodowska-Curie,),通常稱為玛丽·居里(Marie Curie)或居里夫人(Madame Curie),波兰裔法国籍物理学家、化学家。她是放射性研究的先驱者,是首位获得诺贝尔奖的女性,获得两次诺贝尔奖(獲得物理学奖及化学奖)的第一人(另一位為鲍林,獲得化學奖及和平奖)及唯一的女性,是唯一獲得二種不同科學類诺贝尔奖的人。她是巴黎大学第一位女教授。1995年,她与丈夫皮埃尔·居里一起移葬先贤祠,成为第一位凭自身成就入葬先贤祠的女性。 玛丽·居里原名玛丽亚·斯克沃多夫斯卡(Maria Salomea Skłodowska),生于当时俄罗斯帝国统治下的波兰会议王国的华沙,即现在波兰的首都。她在华沙地下读书,并开始接受真正的科学训练。她在华沙生活至24岁,1891年追随姊姊布洛尼斯拉娃至巴黎读书。她在巴黎取得学位并在毕业后留在巴黎从事科学研究。1903年她和丈夫皮埃尔·居里及亨利·贝可勒尔共同獲得了诺贝尔物理学奖,1911年又因放射化学方面的成就获得诺贝尔化学奖。 玛丽·居里的成就包括开创了放射性理论,放射性的英文Radioactivity是她造的词,她发明了分离放射性同位素的技术,以及发现两种新元素釙(Po)和镭(Ra)。在她的指导下,人们第一次将放射性同位素用于治疗肿瘤。她在巴黎和华沙各创办了一座居里研究所,这两个研究所至今仍是重要的医学研究中心。在第一次世界大战期间,她创办了第一批战地放射中心。 雖然玛丽·居里是法國公民,人身在異國,但也从未忘记她的祖国波兰。她教女兒波蘭文,多次帶她們去波蘭。她以祖国波兰的名字命名她所发现的第一种元素釙。 第一次世界大战時期,瑪麗·居里利用她本人发明的流動式X光機協助外科醫生。1934年病逝於法國上薩瓦省療養院,享年66岁。.

新!!: 诺贝尔物理学奖得主列表和玛丽·居里 · 查看更多 »

玛丽亚·格佩特-梅耶

玛丽亚·格佩特-梅耶(Maria Goeppert-Mayer,),德裔美国物理学家。1963年因提出原子核殼層模型而獲得諾貝爾物理獎。是繼瑪麗·居里之後第二位拿到此獎的女性。.

新!!: 诺贝尔物理学奖得主列表和玛丽亚·格佩特-梅耶 · 查看更多 »

灯塔

灯塔,是位於海岸、港口或河道,用以指引船隻方向的建築物。 燈塔大部份都類似塔的形狀,透過塔頂的透鏡系統,將光芒射向海面照明。在電力未普及的時候,常以火作為光源。從前原始的導航設備中,是在小山或峭壁頂部點燃火焰照明(參見烽火臺)。由於現代的導航設備已經非常先進,人為操作的燈塔數量大大減少,全世界只剩下1,500個依然操作的燈塔。燈塔常用來標誌危險的海岸、險要的沙洲或暗礁以及通往港嘴的航道。.

新!!: 诺贝尔物理学奖得主列表和灯塔 · 查看更多 »

珀西·布里奇曼

西·布里奇曼(Percy Williams Bridgman,),美国物理学家,因他在高壓物理方面的貢獻,1946年获得诺贝尔物理学奖。布里奇曼對科學方法及科學哲學的一些觀點有相當廣泛的著述。.

新!!: 诺贝尔物理学奖得主列表和珀西·布里奇曼 · 查看更多 »

理论物理学

论物理学(Theoretical physics)通过为现实世界建立数学模型来试图理解所有物理现象的运行机制。通过“物理理论”来条理化、解释、预言物理现象。 豐富的想像力、精湛的數學造詣、嚴謹的治學態度,這些都是成為理論物理學家需要培養的優良素質。例如,在十九世紀中期,物理大師詹姆斯·麥克斯韋覺得電磁學的理論雜亂無章、急需整合。尤其是其中許多理論都涉及超距作用(action at a distance)的概念。麥克斯韋對於這概念極為反對,他主張用場論來解釋。例如,磁鐵會在四周產生磁場,而磁場會施加磁場力於鐵粉,使得這些鐵粉依著磁場力的方向排列,形成一條條的磁場線;磁鐵並不是直接施加力量於鐵粉,而是經過磁場施加力量於鐵粉;麥克斯韋嘗試朝著這方向開闢一條思路。他想出的「分子渦流模型」,借用流體力學的一些數學框架,能夠解釋所有那時已知的電磁現象。更進一步,這模型還展示出一個嶄新的概念——電位移。由於這概念,他推理電磁場能夠以波動形式傳播於空間,他又計算出其波速恰巧等於光速。麥克斯韋斷定光波就是一種電磁波。從此,電學、磁學、光學被整合為一統的電磁學。.

新!!: 诺贝尔物理学奖得主列表和理论物理学 · 查看更多 »

理查德·費曼

查德·菲利普斯·費曼(Richard Phillips Feynman,),美國理论物理學家,量子电动力学创始人之一,纳米技术之父。由費曼提出或完善的费曼图、费曼规则(Feynman rules)和重整化计算方法是研究量子电动力学和粒子物理学的重要工具。费曼个性十足,爱出风头,平易近人且喜爱搞怪,有很多逸闻流传于世。在1999年英國雜誌《》对全球130名領先物理學家的民意調查中,他被評為有史以來10位最偉大的物理學家之一。費曼父母皆為立陶宛猶太人,來自白俄羅斯,然而費曼本人是無神論者。 费曼业余爱好广泛,如打邦哥鼓、破译玛雅文明的象形文字、研究如何撬開保险櫃的鎖及逛脱衣舞厅等。他自己搜罗了不少这类故事,整理成了自传《别闹了,费曼先生!》。该书后來成为畅销大众读物。费曼是少数几个在大众心目中形象生动鲜活的前沿科学家之一。.

新!!: 诺贝尔物理学奖得主列表和理查德·費曼 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 诺贝尔物理学奖得主列表和磁場 · 查看更多 »

磁矩

磁矩是磁鐵的一種物理性質。處於外磁場的磁鐵,會感受到力矩,促使其磁矩沿外磁場的磁場線方向排列。磁矩可以用向量表示。磁鐵的磁矩方向是從磁鐵的指南極指向指北極,磁矩的大小取決於磁鐵的磁性與量值。不只是磁鐵具有磁矩,載流迴路、電子、分子或行星等等,都具有磁矩。 科學家至今尚未發現宇宙中存在有磁單極子。一般磁性物質的磁場,其泰勒展開的多極展開式,由於磁單極子項目恆等於零,第一個項目是磁偶極子項、第二個項目是磁四極子(quadrupole)項,以此类推。磁矩也分為磁偶極矩、磁四極矩等等部分。從磁矩的磁偶極矩、磁四極矩等等,可以分別計算出磁場的磁偶極子項目、磁四極子項目等等。隨著距離的增遠,磁偶極矩部分會變得越加重要,成為主要項目,因此,磁矩這術語時常用來指稱磁偶極矩。有些教科書內,磁矩的定義與磁偶極矩的定義相同。.

新!!: 诺贝尔物理学奖得主列表和磁矩 · 查看更多 »

磁流体力学

磁流体力学(英文:MHD, Magnetohydrodynamics、magnetofluiddynamics或hydromagnetics),是研究等离子体和磁场相互作用的物理学分支,其基本思想是在运动的导电流体中,磁场能够感应出电流。磁流体力学将等离子体作为连续介质处理,要求其特征尺度远远大于粒子的平均自由程、特征时间远远大于粒子的平均碰撞时间,不需考虑单个粒子的运动。由于磁流体力学只关心流体元的平均效果,因此是一种近似描述的方法,能够解释等离子体中的大多数现象,广泛应用于等离子体物理学的研究。更精确的描述方法是考虑粒子速度分布函数的动理学理论。磁流体力学的基本方程是流体力学中的纳维-斯托克斯方程和电动力学中的麦克斯韦方程组。磁流体力学是由瑞典物理学家汉尼斯·阿尔文创立的,阿尔文因此获得1970年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和磁流体力学 · 查看更多 »

离子阱

离子阱,又称离子陷阱,是一种利用电场或磁场将离子(即带电原子或分子)俘获和囚禁在一定范围内的装置,离子的囚禁在真空中实现,离子与装置表面不接触。应用最多的离子阱有“保罗离子阱”(即四极离子阱,沃尔夫冈·保罗)和彭宁离子阱。 离子阱可以应用于实现量子计算机。传统计算机以电位的高低表示位元0和1,而量子计算机以粒子的量子力学状态,如原子的自旋方向等表示0和1,称为“量子位元”。离子阱利用电极产生电场,将经过超冷处理的离子囚禁在电场里,实现量子位元。 L L Category:离子 Category:质谱.

新!!: 诺贝尔物理学奖得主列表和离子阱 · 查看更多 »

穆斯堡尔效应

斯堡尔效应,即原子核辐射的无反冲共振吸收。这个效应首先是由德国物理学家穆斯堡尔于1958年首次在实验中实现的,因此被命名为穆斯堡尔效应。应用穆斯堡尔效应可以研究原子核与周围环境的超精细相互作用,是一种非常精确的测量手段,其能量分辨率可高达10-13,并且抗干扰能力强、实验设备和技术相对简单、对样品无破坏。由于这些特点,穆斯堡尔效应一经发现,就迅速在物理学、化学、生物学、地质学、冶金学、矿物学、地质学等领域得到广泛应用。近年来穆斯堡尔效应也在一些新兴学科,如材料科学和表面科学开拓了应用前景。 理论上,当一个原子核由激发态跃迁到基态,发出一个γ射线光子。当这个光子遇到另一个同样的原子核时,就能够被共振吸收。但是实际情况中,处于自由状态的原子核要实现上述过程是困难的。因为原子核在放出一个光子的时候,自身也具有了一个反冲动量,这个反冲动量会使光子的能量减少。同样原理,吸收光子的原子核光子由于反冲效应,吸收的光子能量会有所增大。这样造成相同原子核的发射谱和吸收谱有一定差异,所以自由的原子核很难实现共振吸收。迄今为止,人们还没有在气体和不太粘稠的液体中观察到穆斯堡尔效应。 1957年底,穆斯堡尔提出实现γ射线共振吸收的关键在于消除反冲效应。如果在实验中把发射和吸收光子的原子核置于固体晶格中,那么出现反冲效应的就不再是单一的原子核,而是整个晶体。由于晶体的质量远远大于单一的原子核的质量,反冲能量就减少到可以忽略不计的程度,这样就可以实现穆斯堡尔效应。实验中原子核在发射或吸收光子时无反冲的概率叫做无反冲分数f,无反冲分数与光子能量、晶格的性质以及环境的温度有关。 穆斯堡尔使用191Os(锇)晶体作γ射线放射源,用191Ir(铱)晶体作吸收体,于1958年首次在实验上实现了原子核的无反冲共振吸收。为减少热运动对结果的影响,放射源和吸收源都冷却到88K。放射源安装在一个转盘上,可以相对吸收体作前后运动,用多普勒效应调节γ射线的能量。191Os经过β-衰变成为191Ir的激发态,191Ir的激发态可以发出能量为129 keV的γ射线,被吸收体吸收。实验发现,当转盘不动,即相对速度为0时共振吸收最强,并且吸收谱线的宽度很窄,每秒几厘米的速度就足以破坏共振。除了191Ir外,穆斯堡尔还观察到了187Re、177Hf、166Er等原子核的无反冲共振吸收。由于这些工作,穆斯堡尔被授予1961年的诺贝尔物理学奖。 截至2005年上半年,人们已经在固体和粘稠液体中实现了穆斯堡尔效应,样品的形态可以是晶体、非晶体、薄膜、固体表层、粉末、颗粒、冷冻溶液等等,涉及40余种元素90余种同位素的110余个跃迁。然而大部分同位素只能在低温下才能实现穆斯堡尔效应,有的需要使用液氮甚至液氦对样品进行冷却。在室温下只有57Fe、119Sn、151Eu三种同位素能够实现穆斯堡尔效应。其中57Fe的 14.4 keV 跃迁是人们最常用的、也是研究最多的谱线。 穆斯堡尔效应对环境的依赖性很高。细微的环境条件差异会对穆斯堡尔效应产生显著的影响。在实验中,为减少环境带来的影响,需要利用多普勒效应对γ射线光子的能量进行细微的调制。具体做法是令γ射线辐射源和吸收体之间具有一定的相对速度,通过调整v的大小来略微调整γ射线的能量,使其达到共振吸收,即吸收率达到最大,透射率达到最小。透射率与相对速度之间的变化曲线叫做穆斯堡尔谱。应用穆斯堡尔谱可以清楚地检查到原子核能级的移动和分裂,进而得到原子核的超精细场、原子的价态和对称性等方面的信息。应用穆斯堡尔谱研究原子核与核外环境的超精细相互作用的学科叫做穆斯堡尔谱学。 穆斯堡尔谱的宽度非常窄,因此具有极高的能量分辨本领。例如57Fe的 14.4 keV 跃迁,穆斯堡尔谱宽度与γ射线的能量之比ΔE/E~10-13,67Zn的 93.3 keV 跃迁ΔE/E~10-15,107Ag的93 keV 跃迁ΔE/E~10-22。因此穆斯堡尔效应一经发现就在各种精密频差测量中得到广泛应用。例如:.

新!!: 诺贝尔物理学奖得主列表和穆斯堡尔效应 · 查看更多 »

等离子体物理学

等离子体物理学是研究等离子体性质的物理学分支。等离子体是物质的第四态,是由电子、离子等带电粒子及中性粒子组成的混合气体,宏观上表现出准中性,即正负离子的数目基本相等,整体上呈现电中性,但在小尺度上具有明显的电磁性质。等离子体还具有明显的集体效应,带电粒子之间的相互作用是长程库仑作用,单个带电粒子的运动状态受到其它许多带电粒子的影响,又可以产生电磁场,影响其它粒子的运动。等离子体物理学目的是研究发生在等离子体中的一些基本过程,包括等离子体的运动、等离子体中的波动现象、等离子体的平衡和稳定性、碰撞与输运过程等等。等离子体物理学具有广阔的应用前景,包括受控核聚变、空间等离子体、等离子体天体物理、低温等离子体等等。.

新!!: 诺贝尔物理学奖得主列表和等离子体物理学 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 诺贝尔物理学奖得主列表和粒子物理學 · 查看更多 »

索尔·珀尔马特

索尔·珀尔马特(Saul Perlmutter,),美国天体物理学家,劳伦斯伯克利国家实验室、伯克利加州大学教授,美国国家科学院院士。2003年獲选为美国科学进步协会会员。 2011年,珀爾馬特獲諾貝爾物理學獎一半獎項,另一半獎項由布莱恩·施密特與亚当·里斯共同獲得,以表揚他們「透過觀測遙遠超新星而發現宇宙加速膨脹」。 因「基礎性地發現與探索中微子震盪,顯示出超越粒子物理學標準模型的新領域」,施密特、里斯與高紅移超新星搜索隊成員、珀尔马特與超新星宇宙學計畫實驗團隊共同榮獲2015年基礎物理學突破獎。.

新!!: 诺贝尔物理学奖得主列表和索尔·珀尔马特 · 查看更多 »

約翰·凡扶累克

約翰·凡扶累克(John van Vleck,),出生于康涅狄格州米德尔敦,美国物理学家,1977年,因為對磁性和無序體系電子結構的基礎性理論研究,與菲利普·安德森、內維爾·莫特共同榮获诺贝尔物理学奖。1980年,在麻薩諸塞州劍橋去世。.

新!!: 诺贝尔物理学奖得主列表和約翰·凡扶累克 · 查看更多 »

約翰·斯特拉特,第三代瑞利男爵

約翰·斯特拉特,第三代瑞利男爵,OM,FRS(John Strutt, 3rd Baron Rayleigh,),英國物理學家。他与威廉·拉姆齐合作发现氩元素,并因此获得1904年诺贝尔物理学奖。他还发现了瑞利散射,预测了面波的存在。.

新!!: 诺贝尔物理学奖得主列表和約翰·斯特拉特,第三代瑞利男爵 · 查看更多 »

約翰內斯·延森

约翰内斯·汉斯·丹尼尔·延森(Johannes Hans Daniel Jensen,),德国物理学家,因发现原子核的核殼層模型理论而获得1963年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和約翰內斯·延森 · 查看更多 »

緊湊緲子線圈

緊湊緲子線圈(CMS,Compact Muon Solenoid),瑞士歐洲核子研究組織CERN的大型強子對撞機計劃的兩大通用型粒子偵測器中的一個。直至2006年,已有約2300位來自159個不同的研究機構的科學家,共同參與建設。CMS將建在法國的Cessy的地下洞穴中,剛好跨過瑞士日內瓦的邊境。完成後的偵測器將是一個長約21公尺,直徑約16公尺的筒狀的結構,重量達12500公噸(這也是其名稱的由來)。.

新!!: 诺贝尔物理学奖得主列表和緊湊緲子線圈 · 查看更多 »

约翰·巴丁

约翰·巴丁(John Bardeen,),美国物理学家,因發明電晶體及其相關效應;超导的BCS理论分別在1956年、1972年2次获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和约翰·巴丁 · 查看更多 »

约翰·科斯特利茨

约翰·科斯特利茨,FRS(John Kosterlitz,),英裔美國凝聚体物理学家,现任布朗大学物理学教授。他与戴维·索利斯以及邓肯·霍尔丹因“在物质的拓扑相变和拓扑相领域的理论性发现”获得2016年的诺贝尔物理学奖。科斯特利茨生在一个德国犹太人移民家庭,父亲是生物化学家。他在剑桥大学冈维尔与凯斯学院获得学士及硕士学位,而后在牛津大學布雷齊諾斯學院获得博士学位。在伯明翰大学以及康奈尔大学等校担任博士后研究员后,1974年,科斯特利茨成为伯明翰大学的教员。1982年,他成为布朗大学的物理学教授。科斯特利茨目前是芬兰阿尔托大学的访问学者。 科斯特利茨的研究领域包括凝聚体物理学,一维及二维系统物理学,相变理论中的随机系统问题、问题及自旋玻璃问题,临界动力学中的熔化以及凝固过程。 科斯特利茨所获荣誉包括英国皇家学会会士及美国物理学会会员及美国国家科学院院士。同时,他还曾获得英国物理学会颁发的麦克斯韦奖章和奖金(1981)、美国物理学会颁发的(2000)以及诺贝尔物理学奖(2016)。.

新!!: 诺贝尔物理学奖得主列表和约翰·科斯特利茨 · 查看更多 »

约翰·马瑟

约翰·克倫威爾·马瑟(John Cromwell Mather,),美国国家航空航天局戈达德航天中心的高级天体物理学家。他和乔治·斯穆特因发现了宇宙微波背景辐射的黑体形式和各向异性共同获得2006年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和约翰·马瑟 · 查看更多 »

约翰·霍尔

约翰·霍尔(John L. Hall,),美国物理学家,美国实验天体物理联合研究所(JILA)教授,科罗拉多大学物理系讲师。霍尔与德国物理学家特奥多尔·亨施因对基于激光的精密光谱学发展作出的贡献而获得了2005年诺贝尔物理学奖的一半,该奖的另一半由美国物理学奖罗伊·格劳伯获得。.

新!!: 诺贝尔物理学奖得主列表和约翰·霍尔 · 查看更多 »

约翰·考克饶夫

约翰·考克饶夫爵士,OM,KCB,CBE,FRS(Sir John Douglas Cockcroft,),英国物理学家,1951年诺贝尔物理学奖获得者。1961-1965年間,曾擔任澳洲國立大學校監。.

新!!: 诺贝尔物理学奖得主列表和约翰·考克饶夫 · 查看更多 »

约翰·施里弗

约翰·施里弗(John Schrieffer,),伊利诺伊州奥克帕克人,美国物理学家。1972年,因為與約翰·巴丁、利昂·庫珀聯合創立了超導微觀理論,即BCS理論,共同榮获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和约翰·施里弗 · 查看更多 »

约翰内斯·贝德诺尔茨

约翰内斯·贝德诺尔茨(Johannes Bednorz,),德国物理学家,因在发现陶瓷材料中的超导电性(高温超导)所作的重大突破,与卡尔·米勒共同获得1987年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和约翰内斯·贝德诺尔茨 · 查看更多 »

约翰内斯·斯塔克

约翰内斯·斯塔克(Johannes Stark,),德国物理学家,种族歧视者,1919年诺贝尔物理学奖获得者。.

新!!: 诺贝尔物理学奖得主列表和约翰内斯·斯塔克 · 查看更多 »

约瑟夫·汤姆孙

约瑟夫·汤姆孙爵士,OM,FRS(Sir Joseph John Thomson,,簡稱J.J.Thomson),英国物理学家,电子的发现者。.

新!!: 诺贝尔物理学奖得主列表和约瑟夫·汤姆孙 · 查看更多 »

约瑟夫·泰勒

约瑟夫·泰勒(Joseph Hooton Taylor,),美国物理学家。他和拉塞尔·赫尔斯共同发现史上第一个位于双星系统脉冲星PSR B1913+16,并通过对其深入研究首次发现引力波存在的间接定量证据, 是对爱因斯坦广义相对论的一项重要验证。泰勒也因此和赫尔斯一同获得1993年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和约瑟夫·泰勒 · 查看更多 »

维塔利·拉扎列维奇·金兹堡

维塔利·拉扎列维奇·金兹堡(Виталий Лазаревич Гинзбург,Vitaly Lazarevich Ginzburg,),苏联著名理论物理学家和天体物理学家。.

新!!: 诺贝尔物理学奖得主列表和维塔利·拉扎列维奇·金兹堡 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

新!!: 诺贝尔物理学奖得主列表和维尔纳·海森堡 · 查看更多 »

维克托·赫斯

维克托·赫斯(德语:Victor Hess,)是一名奥地利裔美国物理学家,1936年诺贝尔物理学奖获得者。他出生在奥地利施蒂利亞州Deutschfeistritz附近,逝世于美国纽约州弗農山。.

新!!: 诺贝尔物理学奖得主列表和维克托·赫斯 · 查看更多 »

维恩位移定律

维恩位移定律(Wien's displacement law)是物理学上描述黑体电磁辐射光谱辐射度的峰值波长与自身温度之间反比关系的定律,其数学表示为: 式中 光学上一般使用纳米(nm)作为波长单位,则 b.

新!!: 诺贝尔物理学奖得主列表和维恩位移定律 · 查看更多 »

罗伊·格劳伯

罗伊·杰·格劳伯(Roy Jay Glauber,),美国物理学家,哈佛大学物理学教授和亞利桑那大學光學科學兼職教授,出生於紐約市。他因“对光学相干性的量子理论的贡献”而获得一半的2005年诺贝尔物理学奖,另一半由美国科罗拉多大学的约翰·霍尔和德国慕尼黑路德维希-马克西米利安大学特奥多尔·亨施分享。他亦是搞笑諾貝爾獎頒獎典禮的掃帚保管員,總是負責清掃臺上的紙飛機。.

新!!: 诺贝尔物理学奖得主列表和罗伊·格劳伯 · 查看更多 »

罗伯特·威尔逊

罗伯特·威尔逊(Robert Wilson ),美国射电天文学家,1964年与阿诺·彭齐亚斯一起发现了微波背景辐射,并因此获得1978年诺贝尔物理学奖。 威尔逊1936年出生于美国得克萨斯州的休斯敦,父亲是一位化学工程师。威尔逊1957年以优秀的成绩毕业于萊斯大學,而后进入加州理工学院攻读研究生。在那里,他受到著名天文学家弗雷德·霍伊尔的影响,支持稳恒态宇宙学。1962年获博士学位。1963年威尔逊转往贝尔实验室设在新泽西州霍姆代尔的研究中心,与彭齐亚斯进行合作,于1964年使用一具为早期通讯卫星设计的天线发现了宇宙微波背景辐射。威尔逊致力于使用射电天文的方法研究星际分子、测定星际物质中各种同位素的相对丰度。1976年 威尔逊成为贝尔实验室无线电物理研究部的主任,1978年与彭齐亚斯一起获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和罗伯特·威尔逊 · 查看更多 »

罗伯特·密立根

罗伯特·密立根(Robert Millikan,),美国物理学家,1922年IEEE爱迪生奖章得主与1923年诺贝尔物理学奖得主。1910-1917年曾以油滴實驗精确地测得出基本电荷的电荷量e的值,从而确定了电荷的不连续性,1916年曾验证了爱因斯坦的光电效应公式是正确的,并测定了普朗克常数;另外他在宇宙射线方面也做了一些工作。.

新!!: 诺贝尔物理学奖得主列表和罗伯特·密立根 · 查看更多 »

罗伯特·科尔曼·理查森

罗伯特·科尔曼·理查森(Robert Coleman Richardson,),生於华盛顿特区,美国物理学家,1996年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和罗伯特·科尔曼·理查森 · 查看更多 »

罗伯特·霍夫施塔特

罗伯特·霍夫施塔特(Robert Hofstadter,),美国物理学家,因為“其对原子核中的电子散射现象的开创性研究以及随之而来的对核子结构的发现”而和鲁道夫·穆斯堡尔共同分享了1961年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和罗伯特·霍夫施塔特 · 查看更多 »

美元

美元(United States Dollar;ISO 4217代码:USD),又稱美圓、美金,(美國)聯邦儲備票據,是美国作為存款債務的官方货币。它的出现是由于《1792年铸币法案》的通过。它同时也作为储备货币在美国以外的国家广泛使用。目前美元的发行是由美国联邦储备系统控制。美元通常可以使用符号“$”来表示,而用来表示美分的标志则是“¢”。国际标准化组织为美元取的ISO 4217标准代号为USD。.

新!!: 诺贝尔物理学奖得主列表和美元 · 查看更多 »

羅伯特·勞夫林

罗伯特·勞夫林(Robert Laughlin,1950年11月1日加利福尼亚州维塞利亚),美国物理学家,1998年获诺贝尔物理学奖。以研究量子霍爾效應而聞名。.

新!!: 诺贝尔物理学奖得主列表和羅伯特·勞夫林 · 查看更多 »

爱德华·珀塞尔

爱德华·珀塞尔(Edward Purcell,),美国物理学家,1952年诺贝尔物理学奖获得者和1979年美国国家科学奖章获得者。 珀塞尔担任过德怀特·艾森豪威尔、约翰·肯尼迪和林登·约翰逊三位总统的科学顾问。珀塞尔还曾是美国物理学会主席以及美国哲学学会、美国国家科学院和美国艺术与科学研究院会员。.

新!!: 诺贝尔物理学奖得主列表和爱德华·珀塞尔 · 查看更多 »

爱德华·阿普尔顿

爱德华·阿普尔顿爵士,GBE,KCB,FRS(Sir Edward Appleton,),英国物理学家,曾任爱丁堡大学校长,国际科学无线电协会主席。 他长期从事大气层物理性质的研究,1926年发现高度约为150英里(241千米)的电离层,后被命名为阿普顿层,1947年获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和爱德华·阿普尔顿 · 查看更多 »

瑞典克朗

典克朗(svensk krona,,代號:SEK,符號:kr)是自1873年通行於瑞典的貨幣。 主要货币单位为克朗和欧尔。1克朗(krona)下分為100歐爾(öre),但所有歐爾硬幣已經於2010年10月起停止流通。貨品仍能使用歐爾定價,但以現金交易時會把金額捨入至整數克朗。 在2013年4月,瑞典克朗是世界上交易量第十一大的货币.

新!!: 诺贝尔物理学奖得主列表和瑞典克朗 · 查看更多 »

瑞典皇家科学院

典皇家科学院(Kungliga Vetenskapsakademien,鲜译“瑞典皇家自然科学学会”)於1739年奉瑞典国王弗雷德里克一世之命,仿效当时的伦敦皇家自然科学促进学会和巴黎皇家科学院成立,是17个团体之一。作为非官方的独立学术团体,它致力于推进科学,特别是自然科学及数学的发展。 瑞典皇家科学院的总部设于瑞典首都斯德哥尔摩,目前有约350名瑞典籍会员(院士)和164名外籍会员(外籍院士)。瑞典皇家科学院的会员采用终身制,自1739年成立以来,共选举产生了约1450名会员。随着会员的老龄化程度的增加,自1970年代起,超过65岁的会员将成为荣誉退休会员,目前瑞典皇家科学院有164名65岁以下瑞典籍会员。 瑞典皇家科学院的会员分为十个学部:.

新!!: 诺贝尔物理学奖得主列表和瑞典皇家科学院 · 查看更多 »

瓦尔·菲奇

尔·菲奇(Val Logsdon Fitch,),美国物理学家,1980年,因為發現中性K介子衰變時存在對稱破壞,與詹姆斯·克羅寧共同榮获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和瓦尔·菲奇 · 查看更多 »

瓦尔特·博特

尔特·威廉·格奥尔格·博特(Walther Wilhelm Georg Bothe,),德国物理学家、数学家和化学家,1954年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和瓦尔特·博特 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 诺贝尔物理学奖得主列表和电子 · 查看更多 »

电子显微镜

電子顯微鏡(electron microscope,簡稱電鏡或電顯)是使用電子來展示物件的內部或表面的顯微鏡。 高速的電子的波長比可見光的波長短(波粒二象性),而顯微鏡的分辨率受其使用的波長的限制,因此電子顯微鏡的分辨率(約0.2奈米)遠高於光學顯微鏡的分辨率(約200奈米)。.

新!!: 诺贝尔物理学奖得主列表和电子显微镜 · 查看更多 »

电离层

电离层是地球大气层被太阳射线电离的部分,它是地球磁层的内界。由于它影响到无线电波的传播,它有非常重要的实际意义。.

新!!: 诺贝尔物理学奖得主列表和电离层 · 查看更多 »

电报

电报是通信业务的一種,在19世紀初發明,是最早使用电进行通信的方法。電報大為加快了消息的流通,是工業社會的其中一項重要發明。早期的電報只能在陸地上通訊,後來使用了海底電纜,開展了越洋服務。到了20世紀初,開始使用無線電撥發電報,電報業務基本上已能抵達地球上大部份地區。電報主要是用作傳遞文字訊息,使用電報技術用作傳送圖片稱為傳真。隨著傳真機的廣泛使用,電報機現已式微。.

新!!: 诺贝尔物理学奖得主列表和电报 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 诺贝尔物理学奖得主列表和物理学 · 查看更多 »

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

新!!: 诺贝尔物理学奖得主列表和物理学史 · 查看更多 »

物理学家列表

诺贝尔物理学奖获得者名单包含更多的20世纪以及21世纪著名物理学家。.

新!!: 诺贝尔物理学奖得主列表和物理学家列表 · 查看更多 »

特奥多尔·亨施

特奥多尔·亨施 (Theodor Wolfgang Hänsch,),德国物理学家,出生于德国海德堡。因为对光学梳形频谱技术等激光精确光谱学发展上的贡献,与约翰·霍尔共同获得2005年诺贝尔物理学奖奖金的一半,另一半授予了罗伊·格劳伯。特奥多尔·亨施是马克斯·普朗克学会(量子光学)的理事,也是德国巴伐利亚慕尼黑大学实验物理学和激光光谱学教授。 在海德堡获得博士学位后,1972年到1986年,亨施在加利福尼亚的斯坦福大学任教授。苹果公司前任首席执行官斯蒂夫·乔布斯就是他的学生。1986年,亨施回到德国,主持马克斯·普朗克学会的量子光学研究所。1988年,他荣获德国科学基金会的“戈特弗里德·威廉·莱布尼茨奖”。2005年,他又获得德国化学学会及物理学会颁发的奥托·哈恩奖。 亨施的学生卡尔·威曼于2001年获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和特奥多尔·亨施 · 查看更多 »

狄拉克方程式

論物理中,相對於薛丁格方程式之於非相對論量子力學,狄拉克方程式是相對論量子力學的一項描述自旋-½粒子的波函數方程式,由英国物理学家保羅·狄拉克於1928年建立,不帶矛盾地同時遵守了狹義相對論與量子力學兩者的原理,实则为薛定谔方程的洛伦兹协变式。這條方程預言了反粒子的存在,隨後1932年由卡爾·安德森發現了正电子(positron)而證實。 帶有自旋-½的自由粒子的狄拉克方程式的形式如下: 其中m \,是自旋-½粒子的質量,\mathbf與t分別是空間和時間的座標。.

新!!: 诺贝尔物理学奖得主列表和狄拉克方程式 · 查看更多 »

益川敏英

川敏英(,),日本物理學家,專長基本粒子理論。名古屋大學基本粒子宇宙起源研究機構長・特別教授、京都大學名譽教授、益川塾教授・塾頭。文化勳章表彰。文化功勞者。 益川教授以提出小林-益川模型而聞名於世,並因此與小林誠及南部陽一郎共同獲得2008年的諾貝爾物理學獎。小林-益川模型是用來描述頂類型和底類型夸克之間通過W粒子弱相互作用的耦合強度,將卡比博矩陣推廣到三代夸克,並可以用來解釋弱相互作用中的電荷宇稱對稱性破缺。.

新!!: 诺贝尔物理学奖得主列表和益川敏英 · 查看更多 »

相干性

在物理學裏,相干性(coherence)指的是,為了產生顯著的干涉現象,波所需具備的性質。更廣義地說,相干性描述波與自己、波與其它波之間對於某種內秉物理量的相關性質。 當兩個波彼此相互干涉時,因為相位的差異,會造成相长干涉或相消干涉。假若兩個正弦波的相位差為常數,則這兩個波的頻率必定相同,稱這兩個波「完全相干」。兩個「完全不相干」的波,例如白炽灯或太陽所發射出的光波,由於產生的干涉圖樣不穩定,無法被明顯地觀察到。在這兩種極端之間,存在著「部分相干」的波。 相干性又大致分類為時間相干性與空間相干性。時間相干性與波的頻寬有關;而空間相干性則與波源的有限尺寸有關。 波與波之間的的相干性可以用來量度。是波與波之間的干涉圖樣的輻照度對比,相干度可以從干涉可見度計算出來。.

新!!: 诺贝尔物理学奖得主列表和相干性 · 查看更多 »

莱纳·魏斯

莱纳·“莱”·魏斯(Rainer "Rai" Weiss,)是美國理論物理學者,因在引力物理學與天文物理學的貢獻而知名於學術界,是麻省理工学院物理学榮譽教授。在他學術生涯中最重要的成就為發展出激光干涉術,其為激光干涉引力波天文台(LIGO)的關鍵技術。魏斯是宇宙背景探測者(COBE)科學工作小組的主席。 2017年,魏斯因对LIGO探测器及引力波探测的决定性贡献而与巴里·巴里什及基普·索恩共同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和莱纳·魏斯 · 查看更多 »

聚合物

有機聚合物(Polymer)是指具有非常大的分子量的化合物,分子間由結構單位(structural unit)、或單體由共價鍵連接在一起 。 這個聚合物(polymer)是出自於希臘字:polys代表的是多,而meros 代表的是小單位(part),所以很多小單位連結在一起的這種特別的分子,我們稱之為聚合物。可以參考塑膠、DNA和高分子。.

新!!: 诺贝尔物理学奖得主列表和聚合物 · 查看更多 »

道格拉斯·奥谢罗夫

道格拉斯·奥谢罗夫(Douglas Osheroff,)美國华盛顿州阿伯丁),美国物理学家,1996年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和道格拉斯·奥谢罗夫 · 查看更多 »

荧光

荧光(fluorescence)是一种光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出出射光(通常波长比入射光的的波长长,在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。一般以持續發光時間來分辨荧光或磷光,持續發光時間短於10-8秒的稱為荧光,持續發光時間長於10-8秒的稱為磷光。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光。.

新!!: 诺贝尔物理学奖得主列表和荧光 · 查看更多 »

菲利普·安德森

菲利普·安德森(Philip Anderson,),美國物理學家。 物理上,在反鐵磁性、高溫超導等領域有重大貢獻。 因「對磁性和無序體系電子結構的基礎性理論研究」與內維爾·莫特、約翰·凡扶累克一同獲得1977年的諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和菲利普·安德森 · 查看更多 »

菲利普·莱纳德

菲利普·冯·莱纳德(Philipp von Lenard,),德国物理学家,1905年诺贝尔物理学奖获得者。 莱纳德在研究阴极射线时曾获得卓越成果,为此获得诺贝尔奖;他用实验发现了光电效应的重要规律;他也提出过一种原子结构设想。.

新!!: 诺贝尔物理学奖得主列表和菲利普·莱纳德 · 查看更多 »

衍射

--(diffraction),又稱--,是指波遇到障碍物时偏离原来直线传播的物理现象。 在古典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后會发生不同程度的弯散传播。假設將一个障碍物置放在光源和观察屏之间,則會有光亮区域與陰暗区域出現於观察屏,而且這些区域的边界並不銳利,是一种明暗相间的复杂图样。這现象称为衍射,當波在其传播路径上遇到障碍物时,都有可能發生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由於原子尺度的實際物體具有類似波的性質,它們也會表现出衍射现象,可以通过量子力学进行研究其性质。 在適當情况下,任何波都具有衍射的固有性质。然而,不同情况中波发生衍射的程度有所不同。如果障碍物具有多个密集分布的孔隙,就会造成较为复杂的衍射强度分布图样。这是因為波的不同部分以不同的路径传播到观察者的位置,发生波叠加而形成的現象。 衍射的形式論还可以用來描述有限波(量度為有限尺寸的波)在自由空间的传播情况。例如,激光束的發散性質、雷达天线的波束形状以及超声波传感器的视野范围都可以利用衍射方程来加以分析。.

新!!: 诺贝尔物理学奖得主列表和衍射 · 查看更多 »

西蒙·范德梅尔

西蒙·范德梅尔(Simon van der Meer,),荷兰物理学家,因發展出隨機冷凝技術,而促使義大利物理學家卡洛·魯比亞發現W及Z玻色子。.

新!!: 诺贝尔物理学奖得主列表和西蒙·范德梅尔 · 查看更多 »

马丁·佩尔

丁·路易斯·佩尔(Martin Lewis Perl,),美国物理学家,1995年因发现Τ子而获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和马丁·佩尔 · 查看更多 »

马丁·赖尔

丁·賴爾爵士,FRS(Sir Martin Ryle,),英國射電天文學家,賴爾開發出革命性的射電望遠鏡系統,且使用這套系統對弱射電源準確定位和成像。1964年賴爾與馮堡(D.D. Vonberg)首度發表了無線射頻的概念(縱然另有聲稱認為悉尼大學的在同年較早時候已實際製作出天文干涉儀。)賴爾在大學中利用經改良的設備,能觀察到當時已知宇宙中最遠的星系,賴爾也是劍橋大學卡文迪許實驗室天體物理組的第一位教授,並創辦了,1972至1982年間受任命為皇家天文學家。 賴爾與安東尼·休伊什共同獲得1974年的諾貝爾物理學獎,是諾貝爾獎第一次授獎表彰天文研究。.

新!!: 诺贝尔物理学奖得主列表和马丁·赖尔 · 查看更多 »

马丁纽斯·韦尔特曼

丁纽斯·韦尔特曼(Martinus Justinus Godefriedus Veltman,),荷兰理论物理学家,密歇根大学退休教授。他和特胡夫特因在量子规范场论的重整化上的工作而获得了1999年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和马丁纽斯·韦尔特曼 · 查看更多 »

马克斯·冯·劳厄

克斯·冯·劳厄(Max von Laue,),德国物理学家,因发现晶体中X射线的衍射现象而获得1914年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和马克斯·冯·劳厄 · 查看更多 »

马克斯·玻恩

克斯·玻恩(Max Born,),德国物理学家与数学家,对量子力学的发展非常重要,同时在固体物理学及光学方面也有所建树。此外,他在20世纪20年代至30年代间培养了大量知名物理学家。1954年,玻恩因“量子力学方面的基础性研究,特别是给出波函数的统计解释”而获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和马克斯·玻恩 · 查看更多 »

马克斯·普朗克

克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.

新!!: 诺贝尔物理学奖得主列表和马克斯·普朗克 · 查看更多 »

詹姆斯·弗兰克

詹姆斯·弗兰克(James Franck,),德国物理学家,1925年诺贝尔物理学奖获得者。.

新!!: 诺贝尔物理学奖得主列表和詹姆斯·弗兰克 · 查看更多 »

詹姆斯·克罗宁

詹姆斯·克罗宁(James Cronin,),美国物理学家。.

新!!: 诺贝尔物理学奖得主列表和詹姆斯·克罗宁 · 查看更多 »

詹姆斯·查德威克

詹姆斯·查德威克爵士,CH,FRS(Sir James Chadwick,),英国物理学家,因於1932年发现中子而获1935年诺贝尔物理学奖。1941年,他为核武器报告的最後稿本执笔,这份报告促使美國政府開始积极进行核武器研究。第二次世界大戰期間,他担任曼哈頓計劃英國小組的組長。因對物理學的貢獻,他於1945年在英格蘭被冊封為爵士。.

新!!: 诺贝尔物理学奖得主列表和詹姆斯·查德威克 · 查看更多 »

諾貝爾經濟學獎

#重定向 诺贝尔经济学奖.

新!!: 诺贝尔物理学奖得主列表和諾貝爾經濟學獎 · 查看更多 »

高錕

錕爵士(Sir Charles Kuen Kao,),出身上海的香港電機工程學家,2009年獲諾貝爾物理學獎以表揚「在光傳輸於纤维的光学通信领域突破性成就」。 籍貫江蘇省金山縣張堰鎮的書香門弟,祖父高吹萬是清末江南著名書畫家,父親高君湘律師是美國密歇根大学法学院博士。直至中學一年級,一家人住在上海法租界,1949年移民香港跳級讀中學四到七年級,獲香港大學錄取,但港大二戰後停辦電機工程學系,故高錕赴英國重讀高中、繼而本科、1965年獲帝國理工學院電機工程學博士。 1966年在美國電信企業ITT的英國標準電信實驗室任工程師時做出劃時代的實驗,證明用石英基玻璃纖維可長距離傳遞信息,打破玻璃纖維在早期只能短距離傳信的理論難題。1970年回香港任香港中文大學電子工程系創系教授,1987年昇任香港中文大學校長。諾貝爾獎委員會認定其獎項算在標準電信實驗室和香港中文大學名下。獲獎後自言「在香港就讀高中、也曾在中大執教鞭、當校長,並在這裏退休,在香港生活逾三十載,是個名副其實的香港人。」,有英国、美国双重国籍和香港永久居留权。國際媒體常稱「光纖通訊之父」(Father of Fiber Optic Communications).

新!!: 诺贝尔物理学奖得主列表和高錕 · 查看更多 »

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

新!!: 诺贝尔物理学奖得主列表和譜線 · 查看更多 »

计量学

一位科學家站在一台微角分(百万分之一角分,或1/3600度的百万分之一)試驗臺 計量學(Metrology),又稱量測學或度量衡學,是一門量度的科學,包括所有理論和實際的量度方法。計量學涵蓋了測量理論與實踐的所有方面,不受其測量不確定度或應用領域的限制。 計量是對一物理量(如長度、尺寸或容量等)的估計或測定,通常以一標準或度量衡。計量以數字單位的標準來表示,如距離即以多少哩或多少公里來表示。計量是大部份自然科學、技術、及其他社會科學中定量研究的基礎。 計量的過程為估計一數量的多寡和相同類型(如長度、時間、重量等)一單位的多寡之間的比例。計量即為此過程的結果,表示為數字加上一個單位,其中實數為估計的比例。如9公尺,其便為物體長度和長度單位,即公尺之間的比例。不像計數和整數個數個物體一般地可精確知道,每一個量度都是個存在些許不確定性的估計。量度包括了測量尺度(包括量值)、計量單位及不確定性。透過計量可以比較不同的量測,並且減少誤會。有關計量的科學稱為度量衡學。.

新!!: 诺贝尔物理学奖得主列表和计量学 · 查看更多 »

让·佩兰

让·巴蒂斯特·佩兰(Jean Baptiste Perrin,),法国物理学家,生于法国里尔。1926年诺贝尔物理学奖获得者。.

新!!: 诺贝尔物理学奖得主列表和让·佩兰 · 查看更多 »

诺贝尔基金会

諾貝爾基金會成立於1900年,是根據諾貝爾遺屬所建立的私人機構,專門管理諾貝爾遺產及諾貝爾獎的頒發。此基金會也從事一些投資,分別在1946年與1953年,获得瑞典與美國的免稅優待。 原本諾貝爾基金會的投資對象限定於國債與貸款等較風險較少的證券,1953年開始投資股票市場。2000年開始,投資所得也開始用於獎金,在先前,獎金只能來自利息與紅利。.

新!!: 诺贝尔物理学奖得主列表和诺贝尔基金会 · 查看更多 »

诺贝尔奖

诺贝爾奖(Nobelpriset,Nobelprisen),是根据瑞典化学家阿尔弗雷德·诺贝尔的遗嘱於1901年開始頒發的奖项。诺贝尔奖分设物理、化学、生理学或医学、文学、和平和经济学六个奖项(经济学奖于1968由瑞典中央银行增设,全称“瑞典银行纪念诺贝尔经济科学奖”,通称“诺贝尔经济学奖”)。诺贝尔奖普遍被认为是所颁奖的领域内最重要的奖项。.

新!!: 诺贝尔物理学奖得主列表和诺贝尔奖 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 诺贝尔物理学奖得主列表和诺贝尔物理学奖 · 查看更多 »

诺曼·拉姆齐

小诺曼·福斯特·拉姆齐(Norman Foster Ramsey Jr.,),美国物理学家,1989年因发明对于设计制造原子钟非常重要的分离振荡场法而获得诺贝尔物理学奖。拉姆齐在其职业生涯中主要担任哈佛大学的物理学教授,同时还曾在美国原子能委员会等政府机构以及北约等国际组织任职。此外,他还参与创建了美国能源部下属的布鲁克黑文国家实验室以及费米实验室。.

新!!: 诺贝尔物理学奖得主列表和诺曼·拉姆齐 · 查看更多 »

谢尔登·格拉肖

谢尔登·李·格拉肖(Sheldon Lee Glashow,),生于马萨诸塞州布鲁克莱恩,美国物理学家,1979年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和谢尔登·格拉肖 · 查看更多 »

鲁道夫·穆斯堡尔

鲁道夫·穆斯堡尔(Rudolf Mössbauer,),德国物理学家,穆斯堡尔效应(伽马射线的无反冲共振吸收现象)的发现者,1961年获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和鲁道夫·穆斯堡尔 · 查看更多 »

質子

|magnetic_moment.

新!!: 诺贝尔物理学奖得主列表和質子 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 诺贝尔物理学奖得主列表和质量 · 查看更多 »

费利克斯·布洛赫

费利克斯·布洛赫(Felix Bloch,),瑞士物理学家,1952年诺贝尔物理学奖获得者。.

新!!: 诺贝尔物理学奖得主列表和费利克斯·布洛赫 · 查看更多 »

超导体

#重定向 超導體.

新!!: 诺贝尔物理学奖得主列表和超导体 · 查看更多 »

超导现象

超导现象是指材料在低于某一温度时,电阻变为零的现象,而这一温度称为超导转变温度(Tc)。超导现象的特征是零电阻和完全抗磁性。.

新!!: 诺贝尔物理学奖得主列表和超导现象 · 查看更多 »

超環面儀器

超環面儀器(A Toroidal LHC ApparatuS, ATLAS),是歐洲核子研究組織(CERN)的大型強子對撞器(LHC)所配備的七大實驗探測器之一。此實驗專門為觀測涉及高質量粒子的現象而精心設計建造;使用先前較低能量的粒子加速器無法觀測到這些現象。物理學者希望此實驗能為在標準模型之後關於粒子物理學的新理論找到一些線索。 超環面儀器的長度為44m,直徑為25m,總重量為7000ton,內部連接的電線長達3000km。大約有來自38個國家174個學術機構的3000位科學家和工程師共同參與這實驗計畫。最初15年,團隊領導為,從2009年至2013年,法比奥拉·吉亞諾提是第二任領導人,從2013年開始,團隊領導為。2012年7月4日,CERN宣布,緊湊渺子線圈(CMS)探测到质量为125.3±0.6GeV的新玻色子(超過背景期望值4.9个标准差),超環面儀器测量到质量为126.5GeV的新玻色子(5个标准差),这两種粒子极像希格斯玻色子。後來確認就是希格斯玻色子。.

新!!: 诺贝尔物理学奖得主列表和超環面儀器 · 查看更多 »

超流体

超流體是一種物質狀態,特點是完全缺乏黏性。如果將超流體放置於環狀的容器中,由於沒有摩擦力,它可以永無止盡地流動。它能以零阻力通过微管,甚至能从碗中向上“滴”出而逃逸。超流體是被彼得·卡皮查、約翰·艾倫和冬·麥色納在1937年發現的。有關超流體的研究被稱為量子流體力學。氦-4的超流體現象理論是列夫·朗道創造的,而尼古拉·尼古拉耶维奇·博戈柳博夫是第一個建議使用微扰理论者。.

新!!: 诺贝尔物理学奖得主列表和超流体 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 诺贝尔物理学奖得主列表和超新星 · 查看更多 »

路易·奈爾

路易·奈尔(法语:Louis Néel,),全名Louis Eugène Félix Néel,法国物理学家,1970年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和路易·奈爾 · 查看更多 »

路易斯·阿尔瓦雷茨

路易斯·阿尔瓦雷茨(Luis Alvarez,),西班牙裔美国物理学家,1968年获诺贝尔物理学奖。 另外,他在1980年時與身為地質學家的兒子沃爾特·阿爾瓦雷茨等人研究K-T界線地層時發現全球的白堊紀與第三紀交接地層,地層中的銥含量高於正常標準。提出白堊紀-第三紀滅絕事件是因為隕石撞擊造成。.

新!!: 诺贝尔物理学奖得主列表和路易斯·阿尔瓦雷茨 · 查看更多 »

默里·盖尔曼

里·盖尔曼(Murray Gell-Mann,),美國物理學家和美国国家科学院院士。因对基本粒子的分类及其相互作用的发现而获得1969年诺贝尔物理学奖。盖尔曼通晓的学科极广,是一个百科全书式的学者,也是20世纪后期学术界少见的通才。除数理类的学科外,对考古学、动物分类学、语言学等学科也非常精通。 盖尔曼在加州理工学院与理查德·费曼一起共事时所发生的一些逸闻趣事常为人们所津津乐道。.

新!!: 诺贝尔物理学奖得主列表和默里·盖尔曼 · 查看更多 »

黑体 (物理学)

在熱力學中,黑体(Black body),旧称绝对黑体,是一个理想化的物体,它能夠吸收外来的全部电磁辐射,並且不會有任何的反射與透射。隨著溫度上升,黑體所輻射出來的電磁波與光線則稱做黑體辐射。這個名詞在1862年由古斯塔夫·基爾霍夫所提出並引入熱力學內。.

新!!: 诺贝尔物理学奖得主列表和黑体 (物理学) · 查看更多 »

輕子

輕子(Lepton)是一種不参與强相互作用、自旋为1/2的基本粒子。電子是最為人知的一種輕子;大部分化學領域都會涉及到與電子的相互作用,原子不能沒有它,所有化學性質都直接與它有關。輕子又分為兩類:「帶電輕子」與「中性輕子」。帶電輕子包括電子、緲子、陶子,可以與其它粒子組合成複合粒子,例如原子、電子偶素等等。 在所有帶電輕子中,電子的質量最輕,也是宇宙中最穩定、最常見的輕子;質量較重的緲子與陶子會很快地衰變成電子,緲子與陶子必須經過高能量碰撞製成,例如使用粒子加速器或在宇宙線探測實驗。中性輕子包括電中微子、緲中微子、陶中微子;它們很少與任何粒子相互作用,很難被觀測到。 輕子一共有六種風味,形成三個世代。 第一代是電輕子,包括電子()與電中微子 ()。第二代是緲輕子,包括緲子()與緲中微子 ()。第三代是陶輕子,包括陶子()與陶中微子()。 輕子擁有很多內秉性質,包括電荷、自旋、質量等等。輕子與夸克有一點很不相同:輕子不會感受到強作用力。輕子會感受到其它三種基礎力:引力、弱作用力、電磁力。但是,由於中微子的電性是中性,中微子不會感受到電磁力。每一種輕子風味都有其對應的反粒子,稱為「反輕子」。帶電輕子與對應的反輕子唯一不同之處是帶有電荷的正負號相反。根據某些理論,中微子是自己的反粒子,但這論點尚未被證實。 在標準模型裏,輕子扮演重要角色,電子是原子的成分之一,與質子、中子共同組成原子。在某些被合成的奇異原子裏,電子被更換為緲子或陶子。像電子偶素一類的輕子-反輕子粒子也可以被合成。.

新!!: 诺贝尔物理学奖得主列表和輕子 · 查看更多 »

迈克耳孙干涉仪

迈克耳孙干涉仪(Michelson interferometer)是光学干涉仪中最常见的一种,其发明者是美国物理学家阿尔伯特·迈克耳孙。迈克耳孙干涉仪的原理是一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。迈克耳孙和爱德华·莫雷使用这种干涉仪于1887年进行了著名的迈克耳孙-莫雷实验,证实了以太的不存在,启发了狭义相对论。.

新!!: 诺贝尔物理学奖得主列表和迈克耳孙干涉仪 · 查看更多 »

霍斯特·施特默

霍斯特·施特默(Horst Störmer,),德国物理学家,1998年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和霍斯特·施特默 · 查看更多 »

范德瓦耳斯方程

#重定向 范德華方程式.

新!!: 诺贝尔物理学奖得主列表和范德瓦耳斯方程 · 查看更多 »

阿卜杜勒·萨拉姆

罕默德·阿卜杜勒·萨拉姆(محمد عبد السلام,),巴基斯坦理論物理學家。 由於「關於基本粒子間弱相互作用和電磁相互作用的統一理論的,包括對弱中性流的預言在內的貢獻」,薩拉姆與謝爾登·格拉肖、史蒂文·溫伯格共同獲得1979年的諾貝爾物理學獎。 萨拉姆是首位穆斯林諾貝爾科學獎項得主,也是首位巴基斯坦籍諾貝爾獎得主。.

新!!: 诺贝尔物理学奖得主列表和阿卜杜勒·萨拉姆 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 诺贝尔物理学奖得主列表和阿尔伯特·爱因斯坦 · 查看更多 »

阿尔伯特·迈克耳孙

阿尔伯特·亚伯拉罕·迈克耳孙(Albert Abraham Michelson,),又譯「邁克生」、「迈克耳逊」,波蘭裔美国藉物理学家,以测量光速而闻名,尤其是迈克耳孙-莫雷实验。1907年诺贝尔物理学奖获得者。.

新!!: 诺贝尔物理学奖得主列表和阿尔伯特·迈克耳孙 · 查看更多 »

阿尔弗雷德·卡斯特勒

阿尔弗雷德·卡斯特勒(Alfred Kastler,1902年5月3日法国盖布维莱尔 - 1984年1月7日),法国物理学家,1966年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和阿尔弗雷德·卡斯特勒 · 查看更多 »

阿尔弗雷德·诺贝尔

阿尔弗雷德·伯恩哈德·诺贝尔(Alfred Bernhard Nobel,)是瑞典化学家、工程师、发明家、军工装备制造商和矽藻土炸藥的发明者。他曾拥有Bofors军工厂,主要生产军火;还曾拥有一座钢铁厂。在他的遗嘱中,他利用他的巨大财富创立了诺贝尔奖,各种诺贝尔奖项均以他的名字命名。.

新!!: 诺贝尔物理学奖得主列表和阿尔弗雷德·诺贝尔 · 查看更多 »

阿尔贝·费尔

艾尔伯·费尔(Albert Fert,),法国物理学家,2007年以巨磁阻效應与彼得·格林贝格共同获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和阿尔贝·费尔 · 查看更多 »

阿列克谢·阿布里科索夫

#重定向 阿列克谢·阿列克谢耶维奇·阿布里科索夫.

新!!: 诺贝尔物理学奖得主列表和阿列克谢·阿布里科索夫 · 查看更多 »

阿瑟·康普顿

阿瑟·霍利·康普顿(Arthur Holly Compton,),美国物理学家,因发现展示电磁辐射粒子性的康普顿效应而于1927年获得诺贝尔物理学奖。那时的人们尽管已经清楚理解光的波动性,但仍不能完全接受光同时具有波动性与粒子性。因而这一发现轰动一时。他在曼哈顿计划中领导冶金实验室的事迹,以及在1945至1953年间担任圣路易斯华盛顿大学校长的经历也为人熟知。 1919年,康普顿成为首批受美国国家科学研究委员会资助出外留学的学生,前往英国剑桥大学的卡文迪许实验室深造。在那里,他研究了伽马射线的散射与吸收。他在日后发现的康普顿效应正是基于这些研究。此外,他还利用X射线研究了铁磁性与宇宙射线,并发现:铁磁性是电子自旋排列的宏观表现;宇宙射线主要由带正电的粒子组成。 第二次世界大战期间,康普顿是曼哈顿计划的关键人物。他的报告对于计划的实施非常重要。1942年,他成为冶金实验室的领导人,负责建造将铀转化为钚的核反应堆、寻找将钚从铀中分离出来的方法以及设计原子弹等工作。康普顿监理了恩里科·费米建造世界首个核反应堆芝加哥1号堆的过程,该反应堆在1942年12月2日开始试运行。冶金实验室还负责了位于橡树岭国家实验室的的设计与实现。钚则在1945年自汉福德区的中开始制造出来。 战后,康普顿成为圣路易斯华盛顿大学的校长。在其任期内,学校正式废止本科生中的种族隔离,任命了首任女性正教授,又录取了大量回国老兵。.

新!!: 诺贝尔物理学奖得主列表和阿瑟·康普顿 · 查看更多 »

阿瑟·麦克唐纳

阿瑟·布魯斯·麦克唐纳(Arthur Bruce McDonald,),加拿大物理学家、萨德伯里中微子观测站研究所主任,皇后大学的戈登和派翠西亞·葛雷粒子天体物理主席。2015年,由於「發現中微子震盪,並且因此证明中微子具有質量」,麦克唐纳與梶田隆章分享諾貝爾物理學獎 。.

新!!: 诺贝尔物理学奖得主列表和阿瑟·麦克唐纳 · 查看更多 »

阿瑟·肖洛

阿瑟·肖洛(Arthur Schawlow,),出生于纽约州芒特弗农 ,美国物理学家,1981年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和阿瑟·肖洛 · 查看更多 »

阿诺·彭齐亚斯

阿诺·彭齐亚斯(Arno Penzias,),德國出生的美國射电天文学家,犹太人,1964年与罗伯特·威尔逊一起发现了微波背景辐射,并因此获得1978年诺贝尔物理学奖。 彭齐亚斯1933年出生于德国的慕尼黑,后随全家移居美国。是1939年二战爆发前最后一批逃离纳粹德国的难民。到达美国后就读于纽约市立学院,1954年毕业于物理系,毕业后在陆军通讯兵团服役。两年后,彭齐亚斯进入哥伦比亚大学就读,1958年获得硕士学位,1962年获得博士学位。而后任职于新泽西州霍姆代尔附近克劳福德山的贝尔电话公司。1964年,彭齐亚斯和同在贝尔电话公司工作的威尔逊使用一具为早期通讯卫星设计的天线,接收到了来自天空的均匀、且不随时间变化的讯号。1965年,他们二人在《天体物理学报》上发表了题为《在4080兆赫上额外天线温度的测量》的论文,宣布了这个发现。随后,普林斯顿大学的狄克等人在同一杂志上解释道,这就是宇宙微波背景辐射。宇宙微波背景辐射的发现为宇宙大爆炸理论提供了有力证据。彭齐亚斯和威尔逊也因此获得1978年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和阿诺·彭齐亚斯 · 查看更多 »

赤崎勇

赤崎勇(,),日本化學工程學家,曾任松下電器研究員,現任名城大學終身教授、名古屋大學特別教授及名譽教授。美國國家工程院外籍院士。IEEE Fellow。紫綬褒章、文化勲章、勳三等旭日中綬章表彰。文化功勞者。 赤崎教授於2014年凭借「發明高亮度藍色發光二極管,帶來了節能明亮的白色光源」与天野浩、中村修二共同获得諾貝爾物理學獎,他也是繼羅伯特·密立根之後,史上第2位兼有諾貝爾獎暨IEEE愛迪生獎章榮譽的科學家。.

新!!: 诺贝尔物理学奖得主列表和赤崎勇 · 查看更多 »

赫伯特·克勒默

赫伯特·克勒默(Herbert Kroemer,),美国籍德国物理学家,2000年因将半导体异质结构发展应用于高速光电子元件中,而获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和赫伯特·克勒默 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 诺贝尔物理学奖得主列表和薛定谔方程 · 查看更多 »

钱德拉塞卡拉·拉曼

钱德拉塞卡拉·拉曼爵士,FRS(Sir Chandrasekhara Raman,चन्द्रशेखर वेङ्कट रामन्,சந்திரசேகர வெங்கடராமன்,),印度物理学家。他在光散射方面開創性的工作使他成為1930年诺贝尔物理学奖得主。他發現,當光穿過一個透明的物料,部分被反射的光改變波長,此現象現被稱為拉曼效應。在1954年,他獲頒發印度的第一級公民榮譽獎——印度國寶勳章。.

新!!: 诺贝尔物理学奖得主列表和钱德拉塞卡拉·拉曼 · 查看更多 »

肯尼斯·威尔逊

#重定向 肯尼斯·威爾森.

新!!: 诺贝尔物理学奖得主列表和肯尼斯·威尔逊 · 查看更多 »

邓肯·霍尔丹

弗雷德里克·邓肯·迈克尔·霍尔丹,FRS(Frederick Duncan Michael Haldane,),英裔美國物理学家,现任普林斯顿大学物理学系尤金·希金斯物理学教授。他因“在物质的拓扑相变和拓扑相领域的理论性发现”而与戴维·索利斯以及约翰·科斯特利茨共同获得了2016年度诺贝尔物理学奖。他对于凝聚体物理学做出了一系列基础性贡献,其中包括:理论、一维理论、分数量子霍尔效应理论、排斥统计(Exclusion Statistics)以及纠缠谱(Entanglement Spectra)等等。所获荣誉包括:英国皇家学会会士、美国文理科学院院士、美国物理学会会员、英国物理学会会士、美國科學促進會会员、艾尔弗·斯隆基金资助研究人员(1984-1988)及主任(2008)。他还获得了美国物理学会颁发的(1993)、狄拉克奖章(2012)以及诺贝尔物理学奖(2016)。.

新!!: 诺贝尔物理学奖得主列表和邓肯·霍尔丹 · 查看更多 »

铁磁性

鐵磁性(Ferromagnetism)指的是一種材料的磁性狀態,具有自發性的磁化現象。各材料中以鐵最廣為人知,故名之。 某些材料在外部磁場的作用下得而磁化後,即使外部磁場消失,依然能保持其磁化的狀態而具有磁性,即所謂自發性的磁化現象。 所有的永久磁鐵均具有铁磁性或亞铁磁性。 基本上铁磁性这个概念包括任何在没有外部磁场时显示磁性的物质。至今依然有人这样使用这个概念。但是通过对不同显示磁性物质及其磁性的更深刻认识,学者们对这个概念做了更精确的定义。 一個物質的晶胞中所有的磁性離子均指向它的磁性方向時才被稱為是鐵磁性的。 若其不同磁性離子所指的方向相反,其效果能够相互抵消則被稱為反鐵磁性。 若不同磁性離子所指的方向相反,但是有强弱之分,其产生的效果不能全部抵消,則稱為亚铁磁性。 物質的磁性現象存在一個臨界溫度,在此溫度之上,铁磁性会消失而变成顺磁性,在此温度之下铁磁性才会保持。 對於鐵磁性和亞鐵磁性物质,此温度被稱為居里溫度(虽然都称为居里温度,但二者是有差别的);對於反鐵磁性物质,此温度被稱為奈爾溫度。 有人认为磁铁与铁磁性物质之间的吸引作用是人类最早对磁性的认识。Richard M. Bozorth,《Ferromagnetism》,1951年首版,1993年IEEE Press,New York作为“经典再版”再次发行,ISBN 0-7803-1032-2.

新!!: 诺贝尔物理学奖得主列表和铁磁性 · 查看更多 »

脉冲星

脉冲星(Pulsar)是中子星的一種,為會週期性發射脈衝訊號的星體。.

新!!: 诺贝尔物理学奖得主列表和脉冲星 · 查看更多 »

重力波 (相對論)

在廣義相對論裡,重力波是時空的漣漪。當投擲石頭到池塘裡時,會在池塘表面產生漣漪,從石頭入水的位置向外傳播。當帶質量物體呈加速度運動時,會在時空產生漣漪,從帶質量物體位置向外傳播,這時空的漣漪就是重力波。由於廣義相對論限制了引力相互作用的傳播速度為光速,因此會產生重力波的現象。相反地說,牛頓重力理論中的交互作用是以無限的速度傳播,所以在這一理論下並不存在重力波。 由於重力波與物質彼此之間的相互作用非常微弱,重力波很不容易被傳播途中的物質所改變,因此重力波是優良的信息載子,能夠從宇宙遙遠的那一端真實地傳遞寶貴信息過來給人們觀測。重力波天文學是觀測天文學的一門新興分支。重力波天文學利用重力波來對於劇烈天文事件所製成的重力波波源進行數據收集,例如,像白矮星、中子星與黑洞一類的星體所組成的聯星,另外,超新星與大爆炸也是劇烈天文事件所製成的重力波波源。原則而言,天文學者可以利用重力波觀測到超新星的核心,或者大爆炸的最初幾分之一秒,利用電磁波無法觀測到這些重要天文事件。 阿爾伯特·愛因斯坦根據廣義相對論於1916年預言了重力波的存在。1974年,拉塞爾·赫爾斯和約瑟夫·泰勒發現赫爾斯-泰勒脈衝雙星。這雙星系統在互相公轉時,由於不斷發射重力波而失去能量,因此逐漸相互靠近,這現象為重力波的存在提供了首個間接證據。科學家也利用重力波探測器來觀測重力波現象,如簡稱LIGO的激光干涉重力波天文台。2016年2月11日,LIGO科學團隊與處女座干涉儀團隊共同宣布,人类於2015年9月14日首次直接探测到重力波,其源自於双黑洞合併。之後,又陸續多次探測到重力波事件,特別是於2017年8月17日首次探測到源自於雙中子星合併的重力波事件GW170817。除了LIGO以外,另外還有幾所重力波天文台正在建造。2017年,萊納·魏斯、巴里·巴利許與基普·索恩因成功探測到重力波,而獲得諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和重力波 (相對論) · 查看更多 »

量子

量子一詞來自拉丁语quantum,意為“有多少”,代表“相當數量的某物质”。在物理學中常用到量子的概念,指一個不可分割的基本個體。例如,“光的量子”是光的單位。而延伸出的量子力學、量子光學等更成為不同的專業研究領域。 其基本概念为所有的有形性質是“可量子化的”。“量子化”指其物理量的數值是特定的,而不是任意值。例如,在(休息狀態的)原子中,電子的能量是可量子化的。這決定原子的穩定和一般問題。 在20世紀的前半期,出現了新的概念。許多物理學家將量子力學視為瞭解和描述自然的的基本理論。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。.

新!!: 诺贝尔物理学奖得主列表和量子 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 诺贝尔物理学奖得主列表和量子力学 · 查看更多 »

量子穿隧效應

在量子力學裏,量子穿隧效應(Quantum tunnelling effect)指的是,像电子等微观粒子能夠穿入或穿越位勢壘的量子行為,儘管位勢壘的高度大於粒子的總能量。在經典力學裏,這是不可能發生的,但使用量子力學理論卻可以給出合理解釋。 量子穿隧效應是太陽核聚變所倚賴的機制。量子穿隧效應限制了太陽燃燒的速率,是太陽聚變循環的瓶頸,因此維持太陽的長久壽命。許多現代器件的運作都倚賴這效應,例如,隧道二極管、場致發射、約瑟夫森結、等等。扫描隧道显微镜、原子鐘也應用到量子穿隧效應。量子穿隧理論也被應用在半導體物理學、超導體物理學等其它領域。 至2017年為止,由於對於量子穿隧效應在半導體、超導體等領域的研究或應用,已有5位物理學者獲得諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和量子穿隧效應 · 查看更多 »

量子霍尔效应

量子霍尔效应,是霍爾效應的量子力學版本。一般看作是整数量子霍尔效应和分数量子霍尔效应的统称。 整数量子霍尔效应由马普所的德国物理学家冯·克利青发现。他因此获得1985年诺贝尔物理学奖。 分数量子霍尔效应由崔琦、霍斯特·施特默和发现,前两者因此与羅伯特·勞夫林分享1998年诺贝尔物理学奖。 整数量子霍尔效应最初在高磁场下的二维电子氣體中观测到;分数量子霍尔效应通常在迁移率更高的二维电子气下才能观测到。2004年,英國曼徹斯特大學物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功在實驗中從石墨分離出石墨烯,在室溫下觀察到量子霍爾效應。.

新!!: 诺贝尔物理学奖得主列表和量子霍尔效应 · 查看更多 »

量子電動力學

在粒子物理學中,量子電動力學(Quantum Electrodynamics,簡稱QED)是電動力學的相對論性量子場論。它在本質上描述了光與物質間的相互作用,而且它還是第一套同時完全符合量子力學及狹義相對論的理論。量子電動力學在數學上描述了所有由帶電荷粒子經交換光子產生的相互作用所引起的現象,同時亦代表了古典電動力學所對應的量子理論,為物質與光的相互作用提供了完整的科學論述。 用術語來說,量子電動力學就是電磁量子的微擾理論。它的其中一個創始人,理查德·費曼把它譽為「物理學的瑰寶」("the jewel of physics"),原因是它能為相關的物理量提供,例如電子的異常磁矩及氫原子能階的蘭姆位移。.

新!!: 诺贝尔物理学奖得主列表和量子電動力學 · 查看更多 »

自发对称性破缺

#重定向 自发对称破缺.

新!!: 诺贝尔物理学奖得主列表和自发对称性破缺 · 查看更多 »

里卡尔多·贾科尼

里卡尔多·贾科尼(Riccardo Giacconi,),约翰霍普金斯大学教授,意大利裔美国天文学家,因在X射线天文学方面的先驱性贡献而获得2002年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和里卡尔多·贾科尼 · 查看更多 »

苏布拉马尼扬·钱德拉塞卡

蘇布拉馬尼安·錢德拉塞卡,FRS(சுப்பிரமணியன் சந்திரசேகர்,Subrahmanyan Chandrasekhar,),印度裔美國籍物理學家和天體物理學家。錢德拉塞卡在1983年因在星體結構和進化的研究而與另一位美國體物理學家威廉·福勒共同獲諾貝爾物理學獎。他也是另一個獲諾貝爾獎的物理學家錢德拉塞卡拉·拉曼的親戚。錢德拉塞卡從1937年開始在芝加哥大學任職,直到1995年去世為止。他在1953年成為美國的公民。錢德拉塞卡興趣廣泛,年輕時曾學習過德語,並讀遍自莎士比亞到托馬斯·哈代時代的各種文學作品。.

新!!: 诺贝尔物理学奖得主列表和苏布拉马尼扬·钱德拉塞卡 · 查看更多 »

若雷斯·阿尔费罗夫

#重定向 若列斯·伊万诺维奇·阿尔费罗夫.

新!!: 诺贝尔物理学奖得主列表和若雷斯·阿尔费罗夫 · 查看更多 »

雷蒙德·戴维斯

雷蒙德·戴維斯(Raymond "Ray" Davis, Jr.,),美国化學、物理學家,戴維斯、小柴昌俊與里卡尔多·贾科尼,共同獲頒2002年諾貝爾物理學獎,戴維斯與小柴昌俊因「在天體物理學中的開創性貢獻,特別是探測宇宙中微子」共享一半獎金、另一半頒給里卡尔多·贾科尼。.

新!!: 诺贝尔物理学奖得主列表和雷蒙德·戴维斯 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 诺贝尔物理学奖得主列表和電場 · 查看更多 »

電弱交互作用

在粒子物理學中,電弱交互作用是電磁作用與弱交互作用的統一描述,而這兩種作用都是自然界中四種已知基本力。雖然在日常的低能量情況下,電磁作用與弱作用存在很大的差異,然而在超過統一溫度,即數量級在100 GeV的情況下,這兩種作用力會統合成單一的電弱作用力。因此如果宇宙是足夠的熱(約1015K,在大爆炸發生不久以後溫度才降至比上述低的水平),就只有一種電弱作用力,不會有分開的電磁作用與弱交互作用。 由於將基本粒子的電磁作用與弱作用統一的這項貢獻,阿卜杜勒·薩拉姆、謝爾登·格拉肖以及史蒂文·溫伯格獲頒1979年的諾貝爾物理獎。電弱交互作用的理論目前經以下兩個實驗證明存在:.

新!!: 诺贝尔物理学奖得主列表和電弱交互作用 · 查看更多 »

電磁力

電磁力(electromagnetic force)是處於電場、磁場或電磁場的帶電粒子所受到的作用力。大自然的四種基本力中,電磁力是其中一種,其它三種是強作用力、弱作用力、引力。光子是傳遞電磁力的媒介。在電動力學裏,電磁力稱為勞侖茲力。延伸至相對論性量子場論,在量子電動力學裏,兩個帶電粒子倚賴光子為媒介傳遞電磁力。帶電粒子是帶有淨電荷的粒子。電荷是基本粒子的內秉性質。只有帶電粒子或帶電物質(帶有淨電荷的物質)才能夠感受到電磁力,也只有帶電粒子或帶電物質才能夠製成電場、磁場或電磁場來影響其它帶電粒子或帶電物質。 對於決定日常生活所遇到的物質的內部性質,電磁力扮演重要角色。在物質內部,分子與分子之間彼此相互作用的分子間作用力,就是電磁力的一種形式。分子間作用力促使一般物質呈現出各種各樣的物理與化學性質。由於電子與原子核分別帶有的負電荷與正電荷,它們彼此之間會以電磁力相互吸引,使得電子移動於環繞著原子核的原子軌道,與原子核共同組成原子。分子的建構組元是原子。幾個鄰近原子的電子與電子、電子與原子核、原子核與原子核,以電磁力彼此之間相互作用,主導與驅動各種化學反應,因此促成了所有生物程序。.

新!!: 诺贝尔物理学奖得主列表和電磁力 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 诺贝尔物理学奖得主列表和電荷 · 查看更多 »

集成电路

集成电路(integrated circuit,縮寫:IC;integrierter Schaltkreis)、或称微电路(microcircuit)、微芯片(microchip)、晶--片/芯--片(chip)在电子学中是一种把电路(主要包括半導體裝置,也包括被动元件等)小型化的方式,並時常制造在半导体晶圓表面上。 前述將電路製造在半导体晶片表面上的積體電路又稱薄膜(thin-film)積體電路。另有一種(thick-film)(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到基板或线路板所构成的小型化电路。 本文是关于单片(monolithic)集成电路,即薄膜積體電路。 從1949年到1957年,維爾納·雅各比(Werner Jacobi)、杰弗里·杜默 (Jeffrey Dummer)、西德尼·達林頓(Sidney Darlington)、樽井康夫(Yasuo Tarui)都開發了原型,但現代積體電路是由傑克·基爾比在1958年發明的。其因此榮獲2000年諾貝爾物理獎,但同時間也發展出近代實用的積體電路的罗伯特·诺伊斯,卻早於1990年就過世。.

新!!: 诺贝尔物理学奖得主列表和集成电路 · 查看更多 »

陰極射線

極射線是在真空管中可以观察到的电子流。真空管是一个被抽成真空的、装有两个电极(一个阳极和一个阴极)的玻璃管。 阴极被加热后,其释放出来的电子会像射线一样飞往阳极。假如阳极后面的玻璃片覆有磷光物质的话,它会发光。阴极与阳极之间的金属板会在磷光玻璃板上留下影子。这说明磷光是由阴极发射出来的粒子打到磷光板上后发出的。这些粒子直线地从阴极飞到阳极,并飞过阳极一段距离。.

新!!: 诺贝尔物理学奖得主列表和陰極射線 · 查看更多 »

陶瓷材料

陶瓷材料是经过成形、烧结制成的一类无机非金属材料,主要分为传统陶瓷材料和新型陶瓷材料。.

新!!: 诺贝尔物理学奖得主列表和陶瓷材料 · 查看更多 »

K介子

在粒子物理學中,K介子(Kaon,標記為帶正電的K介子從前被分開叫做τ+及θ+,因為直至1960年代前K+一直被視為兩種粒子。見上面的宇稱不守恆))是帶有奇異數這一量子數的四種介子的任一種。在夸克模型中,我們知道它們含有一個奇夸克(或其反夸克),及一個上或下夸克的反夸克(或其夸克)。 自從它們在1947年被發現之後,K介子為基礎相互作用的性質提供了大量的資料。在建立粒子物理學標準模型基礎的過程中,它們有着不可或缺的角色,例如強子的夸克模型及夸克混合的理論(後者於2008年被諾貝爾物理學獎肯定)。在人類對基礎守恆定律的了解中,K介子也有着傑出的貢獻:CP破壞(一種造成大家所見的宇宙物質-反物質失衡的現象)的發現在1980年被諾貝爾物理學獎肯定,這種現象就是在K介子系統被發現的。.

新!!: 诺贝尔物理学奖得主列表和K介子 · 查看更多 »

W及Z玻色子

在物理學中,W及Z玻色子(boson)是負責傳遞弱核力的基本粒子。它們是1983年在歐洲核子研究組織發現的,被認為是粒子物理標準模型的一大勝利。 W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子則半幽默地因是“最後一個要發現的粒子”而名。另一個說法是因Z玻色子有零(Zero)電荷而得名。.

新!!: 诺贝尔物理学奖得主列表和W及Z玻色子 · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

新!!: 诺贝尔物理学奖得主列表和X射线 · 查看更多 »

X射线晶体学

X射線晶體學是一門利用X射線來研究晶體中原子排列的學科。更準確地說,利用電子對X射線的散射作用,X射線晶體學可以獲得晶體中電子密度的分佈情況,再從中分析獲得关于原子位置和化学键的資訊,即晶體結構。 由于包括盐类、金属、矿物、半导体在内的许多物质都可以形成晶体,X射线晶体学已经是许多学科的基本技术。在前十年这项技术主要被用于测量原子大小、化学键的类型和键长,以及其他的许多物质,尤其是矿物和合金。X射线晶体学也揭示了许多生物分子的结构和功能,例如维生素、药物、蛋白质以及脱氧核糖核酸(DNA)。X射线晶体学如今仍然是从原子尺度研究物质结构的主要方法。.

新!!: 诺贝尔物理学奖得主列表和X射线晶体学 · 查看更多 »

查尔斯·巴克拉

查尔斯·巴克拉(Charles Barkla,),英國物理學家。任教於劍橋大學、愛丁堡大學的他,致力於基礎物理研究。1917年,他因發現X射線的散射現象,獲得了諾貝爾物理學獎的殊榮。.

新!!: 诺贝尔物理学奖得主列表和查尔斯·巴克拉 · 查看更多 »

查尔斯·汤斯

查爾斯·哈德·湯斯(Charles Hard Townes,),生于美國南卡罗来纳州格林维尔,美国物理学家、教育家。 让汤斯闻名的是的激微波的理论和应用,其中他得到了根本性的专利,并与激微波和激光两种设备连接量子电子学等工作。1964年,汤斯和巴索夫和普罗霍罗夫分享同获了诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和查尔斯·汤斯 · 查看更多 »

查爾斯·湯姆森·里斯·威爾遜

查尔斯·湯瑪斯·里斯·威耳逊,CH,FRS(Charles Thomson Rees Wilson,),英国原子物理學和核子物理學先驅,生於蘇格蘭中洛锡安郡格倫科斯。先後就學於曼徹斯特和劍橋,1925年到1934年任劍橋自然哲學教授。他以研究大氣電學而聞名,主要成就是發明雲室,用以觀察α粒子與電子的軌跡,從而進一步研究原子、粒子的交互作用。1927年他與康普頓一起分享诺贝尔物理学奖。卒於皮布爾斯郡卡洛普斯。.

新!!: 诺贝尔物理学奖得主列表和查爾斯·湯姆森·里斯·威爾遜 · 查看更多 »

恩里科·费米

恩里科·费米(Enrico Fermi;),美籍意大利裔物理学家。他对量子力学、核物理、粒子物理以及统计力学都做出了杰出贡献,并参与创建了世界首个核反应堆,芝加哥1号堆。他还是原子弹的设计师和缔造者之一。 费米拥有数项核能相关专利,并在1938年因研究由中子轰击产生的感生放射以及发现超铀元素而获得了诺贝尔物理学奖。他是物理学日渐专门化后少数几位在理论方面和实验方面皆能称作佼佼者的物理学家之一。 费米在统计力学领域做出了他第一个重大理论贡献。物理学家沃尔夫冈·泡利1925年提出了泡利不相容原理。费米依据这一原理对于理想气体系统进行了分析,所得到的统计形式现在通常称作费米–狄拉克统计。现在,人们将遵守不相容原理的粒子称为“费米子”。之后,泡利又对β衰变进行了分析。为使这一衰变过程能量守恒,泡利假设在产生电子时同时会产生一种电中性的粒子。这种粒子当时尚未观测到。费米对于这一粒子的性质进行了分析,得出了它的理论模型,并将其称为“中微子”。他对β衰变进行理论分析而得到的理论模型后来被物理学家称作“”。这一理论后来发展为弱相互作用理论。弱相互作用是四种基本相互作用之一。费米还对由中子诱发的感生放射进行了实验研究。他发现慢中子要比快中子易于俘获,并推导出来描述这一放射过程。在用慢中子对钍核以及铀核进行轰击后,他认为他得到了新的元素。尽管他因为这一发现而获得了诺贝尔物理学奖,但这些元素后来被发现只是核裂变产物。 费米1938年逃离意大利,以避免他的夫人劳拉因为犹太裔出身而受到新通过的波及。他移民至美国,并在第二次世界大战期间参与曼哈顿计划。费米领导了他的团队设计并建造了芝加哥1号堆。这个反应堆1942年12月2日进行了,完成了首次人工自持续链式反应。他之后着手建造位于田纳西州橡树岭的和漢福德區的。这两个反应堆先后于1943年和1944年进行了临界试验。他还领导了洛斯阿拉莫斯国家实验室的F部,致力于实现爱德华·泰勒设计的利用热核反应的“”。1945年7月16日,费米参与了三位一体核试,并利用自己的方法估算了爆炸当量。 战后,费米参与了由罗伯特·奥本海默领导的一般顾问委员会,向美国原子能委员会提供核技术以及政策方面的建议。在得知苏联1949年8月完成了首次原子弹爆炸试验后,费米从道德以及技术层面都极力反对发展氢弹。他1954年在上为奥本海默作证。但奥本海默最终仍是被剥夺了。费米对于粒子物理,特别是π介子以及μ子的相关理论,做出了重要贡献。他推测宇宙射线产生于星际空间中受磁场作用加速的物质。在他身后,有许许多多以他的名字命名的奖项、事物以及研究机构,其中包括:恩里科·費米獎、恩里科·费米研究所、费米国立加速器实验室、费米伽玛射线空间望远镜、以及元素镄。.

新!!: 诺贝尔物理学奖得主列表和恩里科·费米 · 查看更多 »

恩斯特·鲁斯卡

恩斯特·奥古斯特·弗里德里希·鲁斯卡(Ernst August Friedrich Ruska,),德國物理学家,电子显微镜的发明者,1986年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和恩斯特·鲁斯卡 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 诺贝尔物理学奖得主列表和恒星 · 查看更多 »

李政道

李政道(Tsung-Dao (T. D.) Lee,),美國華人物理學家,主要知名於宇稱不守恆、李模型(Lee Model)、相對論重離子(RHIC)物理、量子場論的非拓撲性孤立子和孤立子星。他曾擔任哥倫比亞大學名譽教授,於1953年至2012年間講學。 1957年,31歲的李政道與楊振寧一起因弱作用下宇稱不守恒的發現獲得諾貝爾物理學獎,理論由吳健雄的實驗証實。 李政道曾是第二次世界大戰後最年輕的諾貝爾獎得主,此一紀錄直到馬拉拉·優素福扎伊獲得2014年諾貝爾和平獎才被刷新。他也是歷史上第4年輕的諾貝爾獎得主,僅次於威廉·勞倫斯·布拉格(25歲,1915年)、维尔纳·海森堡(30歲,1932年)以及馬拉拉(17歲,2014年)。李政道和楊振寧是最初的中國人諾貝爾獎得主,即使在1962年歸化美國籍之後,他也仍是最年輕的美國人諾貝爾獎得主。.

新!!: 诺贝尔物理学奖得主列表和李政道 · 查看更多 »

杨振宁

杨振宁(Chen-Ning Franklin Yang,),中國理论物理学家,在统计力学和粒子物理学等领域贡献卓著,在物理学界影响力很大。他曾在抗日戰爭時的西南聯合大學唸本科、碩士,后赴美唸博士。他與李政道於1956年共同提出宇稱不守恆理論,因而分享1957年諾貝爾物理學獎,以中华民国国籍成为最早的华人諾獎得主。 1954年,杨振宁同米尔斯创立了“杨-米尔斯规范场”论(Yang-Mills gauge theory),是研究凝聚原子核的力的精深理论。杨振宁和米尔斯把电磁作用是由定域规范不变性所决定的观念推广到不可对易的定域对称群,提出具有定域同位旋不变性的理论,发现必须引进三种矢量规范场,它们形成同位旋转动群SU(2)的伴随表示。这就揭示出规范不变性可能是电磁作用和其他作用的共同本质,从而开辟了用此规范原理来统一各种相互作用的新途径。 自从杨振宁和R.J.Baxter分别于1967年与1972年创建了量子杨一巴克斯特方程(简称QYBE)以来,量子可积模型方面的研究取得了很大进展,特别是V.G.Drinfeld所建立的Yangian和量子群理论对物理中的量子完全可积模型的对称性研究提供了强有力的数学工具。经过系统的发展,已经证明杨-巴克斯特方程在统计模型、量子多体问题、量子可积模型和扭结理论等领域中扮演着至关重要的角色。.

新!!: 诺贝尔物理学奖得主列表和杨振宁 · 查看更多 »

杰尔姆·弗里德曼

杰尔姆·弗里德曼(Jerome Friedman,1930年3月28日芝加哥),美国物理学家,1990年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和杰尔姆·弗里德曼 · 查看更多 »

杰克·施泰因贝格尔

杰克·施泰因贝格尔(Jack Steinberger,),生于德国巴特基辛根,德国裔美国物理学家。1962年他与利昂·莱德曼和梅尔文·施瓦茨一起发现了\mu子中微子,凭借这一结果他们共享了1988年的诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和杰克·施泰因贝格尔 · 查看更多 »

杰拉德·特·胡夫特

杰拉德·特·胡夫特(Gerard 't Hooft ,),荷兰理论物理學家,乌得勒支大学教授,於1999年因為「闡明物理学中電弱相互作用的量子結構」與其指導教授馬丁紐斯·韋爾特曼一同獲得诺贝尔物理学奖。二十世纪中后期最重要的理论家之一。.

新!!: 诺贝尔物理学奖得主列表和杰拉德·特·胡夫特 · 查看更多 »

核力

核力是“強核力”和“弱核力”的總稱。.

新!!: 诺贝尔物理学奖得主列表和核力 · 查看更多 »

核反应

核反应指的是某种微观粒子与原子核相互作用(碰撞)时,使核的结构发生变化,形成新核,放出一个或几个粒子的过程;重核可以发生裂变。 从原子物理学上来说,参与核反应碰撞的粒子数目可以超過两个,但因三个以上的粒子在同一时间在同一位置相撞的几率远低于两个粒子,因此实际上这种情况几乎不会出现。(從\mathrm.

新!!: 诺贝尔物理学奖得主列表和核反应 · 查看更多 »

核子

在化學和物理學裏,核子(nucleon)是組成原子核的粒子。每個原子核都擁有至少一個核子,每個原子又是由原子核與圍繞原子核的一個或多個電子所組成。核子共有兩種:中子和質子。任意原子同位素的質量數就是其核子的總數。因此有時人們也會稱這個數字為「核子數」。 在1960年代之前,核子被認為是基本粒子,不是由更小的部份組成的。今天我們知道核子是複合粒子,由三個夸克經強相互作用綑綁在一起組成。兩個或多個核子之間的交互作用稱為核力,最終這也是強交互作用引起的。(在發現夸克之前,「強交互作用」一詞只用於核子間的交互作用。) 核子研究屬於粒子物理學和核物理學的交叉領域。粒子物理學,特別是量子色動力學,提供了解釋夸克及強交互作用屬性的公式。這些公式用定量方法解釋夸克是如何結合成為中子和質子(以及所有其他的強子)。然而,當多個核子組合為一個原子核(核素)時,這些基礎方程式變得非常難直接求解,必須使用核物理學的方法。核物理學利用近似法和模型來研究多個核子之間的交互作用,例如用核殼層模型。這些模型能夠準確解釋核素的屬性,比如哪些核素會進行核衰變等。 質子和中子都是重子和費米子。質子和中子特別相似,除了中子不帶有電荷以外,中子的質量比質子僅僅高0.1%,它們的質量非常相近,因此它們可以視為同樣核子的兩種狀態,共同組成了一個同位旋二重態(),在抽象的同位旋空間做旋轉變換,就可以從中子變換為質子,或從質子變換為中子。這兩個幾乎相同的核子都感受到相等的強相互作用,這意味著強相互作用對於同位旋空間旋轉變換具有不變性。按照諾特定理,對於強相互作用,同位旋守恆。.

新!!: 诺贝尔物理学奖得主列表和核子 · 查看更多 »

核磁共振

核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,可以進行分子科學的研究,如分子結構、動態等。.

新!!: 诺贝尔物理学奖得主列表和核磁共振 · 查看更多 »

格尔德·宾宁

格尔德·宾宁(Gerd Binnig,),德国物理学家,扫描隧道显微镜和原子力显微镜的发明者之一,1986年获得诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和格尔德·宾宁 · 查看更多 »

梶田隆章

梶田隆章(,),日本物理學家、天文學家,現任所長、同研究所附屬宇宙中微子觀測信息融合中心(Research Center for Cosmic Neutrino)負責人、東京大學特別榮譽教授、東大卓越教授,榮獲文化勳章,並被表彰為文化功勞者。 梶田教授受業於知名物理學家小柴昌俊、戶塚洋二,他與戶塚領導的實驗於1998年證實中微子震盪,2002年三人同獲潘諾夫斯基實驗粒子物理學獎。2015年梶田因「發現了中微子震盪,证明了中微子具有質量」與阿瑟·麥克唐納分享諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和梶田隆章 · 查看更多 »

梅尔文·施瓦茨

梅尔文·施瓦茨(Melvin Schwartz,1932年11月2日-2006年8月28日),美国物理学家,1988年获诺贝尔物理学奖。 1932年11月2日出生于纽约,1953年毕业于哥伦比亚大学,在那里受教于拉比、斯坦博格和李政道,并留在哥伦比亚大学任教。这三位大师对他都有很深的影响。还有就是与莱德曼的合作。 1966年,施瓦茨转到斯坦福大学,那里有一台新加速器刚刚完工。在以后的岁月里,他投入两项主要的研究。一项是研究长寿命中性K介子衰变中的电荷不对称性,第二项是由π介子和μ子组成的类氢原子的产生和检测。 70年代,在“硅谷”引起新的产业革命后,施瓦茨决定投入新的事业,当了数字通讯公司的总裁,这家公司主要从事数字通讯。1991年2月,施瓦茨又回到高能物理,当了布鲁克海文国家实验室的高能和核物理部的副主任。.

新!!: 诺贝尔物理学奖得主列表和梅尔文·施瓦茨 · 查看更多 »

次原子粒子

次原子粒子,或稱亚原子粒子。是指比原子還小的粒子。例如:電子、中子、質子、介子、夸克、膠子、光子等等。.

新!!: 诺贝尔物理学奖得主列表和次原子粒子 · 查看更多 »

欧内斯特·劳伦斯

欧内斯特·奥兰多·劳伦斯(Ernest Orlando Lawrence,),又译恩奈斯特·勞倫斯,美国物理学家。1939年因为参与发明回旋加速器被授予诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和欧内斯特·劳伦斯 · 查看更多 »

欧内斯特·沃尔顿

欧内斯特·托马斯·辛顿·沃尔顿(Ernest Thomas Sinton Walton,),爱尔兰物理学家,1951年诺贝尔物理学奖获得者。他與約翰·考克饒夫於20世纪30年代初在劍橋大學做「原子撞擊」實驗,而成為歷史上第一個以人為方式分裂原子的人,因此開創了核時代。沃尔顿是第一位獲得諾貝爾科學獎的愛爾蘭人。.

新!!: 诺贝尔物理学奖得主列表和欧内斯特·沃尔顿 · 查看更多 »

欧元

欧元(;ISO 4217代码),港澳常稱歐羅,是欧盟中19个国家的货币,这19国是奥地利、比利时、芬兰、法国、德国、希腊、爱尔兰、義大利、卢森堡、荷兰、葡萄牙、斯洛文尼亚、西班牙、馬爾他、塞浦路斯、斯洛伐克、愛沙尼亞、拉脱维亚、立陶宛,合称为欧元区。目前共有3.3亿人使用欧元,如果加上与欧元固定汇率制的货币,欧元影响到全球4.8亿人口。2006年12月,共有6,100亿欧元在市面上流通,按照当时汇率计算,相当于8,020亿美元。欧元流通的现金总价值超过美元。 1欧元(euro)等於100欧分(cent)。.

新!!: 诺贝尔物理学奖得主列表和欧元 · 查看更多 »

欧文·张伯伦

欧文·张伯伦(Owen Chamberlain,1920年7月10日 - 2006年2月28日),是一名出生在旧金山的美國物理学家,因与埃米利奥·塞格雷发现反质子而共同获得1959年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和欧文·张伯伦 · 查看更多 »

欧文·理查森

欧文·瑞查森爵士,FRS(Sir Owen Willans Richardson,),英国物理学家,他在熱離子學發射領域做出重大貢獻,特別是發現了瑞查森定律 (Richardson's Law) ,因而榮獲1928年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和欧文·理查森 · 查看更多 »

歐洲核子研究組織

歐洲核子研究組織(法语:Organisation Européenne pour la Recherche Nucléaire;英文:European Organization for Nuclear Research,通常被簡稱為CERN ),是世界上最大的粒子物理學實驗室,也是全球資訊網的發祥地。它成立於1954年9月29日,總部位於瑞士日內瓦西北部郊區的法瑞邊境上,享有治外法權。CERN目前有21個成員國。以色列是第一個也是目前唯一一個非歐洲成員國。 CERN也被用來稱呼它的實驗室,其主要功能是為高能物理學研究的需要,提供粒子加速器和其它基礎設施,以進行許多國際合作的實驗。同時也設立了資料處理能力很強的大型電腦中心,協助實驗數據的分析,供其他地方的研究員使用,形成了一個龐大的網絡中樞。 歐洲核子研究組織現在已經聘用大約三千名的全職員工。並有來自80個國籍的大約6500位科學家和工程師,代表500餘所大學機構,在CERN進行試驗。這大約佔了世界上的粒子物理學圈子的一半。 粒子物理學博物館歡迎一般公眾在辦公時間參觀。除此之外,事前預約的話每天上下午共有兩個時段可以參觀實際的實驗工作,並備有導覽說明。導覽員來自各國的實驗合作者,可以提供多種語言的嚮導。.

新!!: 诺贝尔物理学奖得主列表和歐洲核子研究組織 · 查看更多 »

正電子

正电子(又称陽電子、反電子、正子,Positron),是電子的反粒子,即電子的對應反物質。它带有+1单位电荷,+1.6×10-19C,自旋为1/2,质量与电子相同,皆为9.10×10-31kg。 正电子与电子碰撞时会产生湮灭现象,这一过程遵守电荷守恒、能量守恒、动量守恒和角动量守恒。在高能情况下,湮灭会生成其他基本粒子。在低能情况下,正负电子湮灭主要生成两个或三个光子(有时也会生成更多光子)。另外,电子和正电子在湮灭之前有时会形成亚稳定的束缚态,即电子偶素。根据电子和正电子的不同自旋状态,电子偶素分为单态(1S0,总自旋为0)和三重态(3S1,总自旋为1)。在真空中,单态电子偶素的半衰期为125ps。三重态电子偶素的半衰期为142ns。 当能量超过1.02兆电子伏特的光子经过原子核附近时(成對產生),或者在放射性元素的正β衰变中(通過弱相互作用),都有可能产生正电子。 1930年英国物理学家保罗·狄拉克从理论上预言了正电子的存在,1932年美国物理学家卡尔·戴维·安德森在宇宙射线中发现了正电子。.

新!!: 诺贝尔物理学奖得主列表和正電子 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 诺贝尔物理学奖得主列表和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 诺贝尔物理学奖得主列表和氦 · 查看更多 »

氦-3

氦-3,是氦的同位素之一,元素符號為3He。它的原子核由二顆質子和一顆中子所組成。是穩定同位素。其相對豐度是0.000137%。一般相信,月球表面的風化層(表皮土)富含著大量的氦-3。.

新!!: 诺贝尔物理学奖得主列表和氦-3 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 诺贝尔物理学奖得主列表和氧气 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 诺贝尔物理学奖得主列表和氩 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 诺贝尔物理学奖得主列表和氮 · 查看更多 »

气体

气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。.

新!!: 诺贝尔物理学奖得主列表和气体 · 查看更多 »

江崎玲於奈

江崎玲於奈(,),羅馬拼音Leo Esaki(レオ・エサキ),日本物理学家,美國國家科學院、美國國家工程院、俄羅斯科學院外籍院士。日本學士院會員。現任校長。文化勳章、勲一等旭日大綬章表彰。 江崎是诺贝尔物理学奖(1973年)暨IEEE榮譽獎章(1991年)雙料得主。他藉由穿隧效應發明了江崎二極體(又稱穿隧效應二極體,與東京通信工業株式會社合作完成),此外也是超晶格研究的先驅(與IBM合作)。.

新!!: 诺贝尔物理学奖得主列表和江崎玲於奈 · 查看更多 »

汤川秀树

湯川秀樹(,),FRS,日本理论物理学家,理學博士。歷任京都大學、大阪大學名譽教授。京都市榮譽市民。勳一等旭日大綬章、文化勳章表彰,贈從二位。 湯川研究位在原子核內部使質子與中子結合的強交互作用,並在1935年發表推測其之間應有介子的存在。1947年,英國物理學家塞西爾·鮑威爾從宇宙線中發現π介子,同時也證明了湯川的理論。因此,湯川在1949年成為首位日本人諾貝爾獎得主。.

新!!: 诺贝尔物理学奖得主列表和汤川秀树 · 查看更多 »

汉尼斯·阿尔文

漢尼斯·奧洛夫·哥斯達·阿爾文(Hannes Olof Gösta Alfvén,),瑞典等离子体物理学家、天文学家,致力于磁流体动力学领域的研究,其成果被广泛应用天体物理学、地质学等学科。1970年诺贝尔物理学奖得主。初時為工程師,後來轉為研究及教授等離子學及電子工程。.

新!!: 诺贝尔物理学奖得主列表和汉尼斯·阿尔文 · 查看更多 »

汉斯·德默尔特

汉斯·格奥尔格·德默尔特(Hans Georg Dehmelt,),德国-美国物理学家,1989年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和汉斯·德默尔特 · 查看更多 »

沃尔夫冈·保罗

沃尔夫冈·保罗(Wolfgang Paul,),德国物理学家,离子阱的开发人之一,1989年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和沃尔夫冈·保罗 · 查看更多 »

沃尔夫冈·泡利

沃尔夫冈·欧内斯特·泡利(Wolfgang Ernst Pauli,),奥地利理论物理学家,是量子力学研究先驱者之一。1945年,在愛因斯坦的提名下,他因泡利不相容原理而获得诺贝尔物理学奖。泡利不相容原理涉及自旋理论,是理解物质结构乃至化学的基础。.

新!!: 诺贝尔物理学奖得主列表和沃尔夫冈·泡利 · 查看更多 »

沃尔特·布喇顿

#重定向 沃尔特·布拉顿.

新!!: 诺贝尔物理学奖得主列表和沃尔特·布喇顿 · 查看更多 »

沃爾夫岡·克特勒

沃尔夫冈·克特勒(Wolfgang Ketterle,),德國物理學家,現任麻省理工學院物理學教授。他的研究專注在冷原子的捕捉,以使這些原子接近絕對零度。在1995年時,他所領導的團隊,成為首先獲得玻色-愛因斯坦凝聚的團隊之一。由於這些研究,使他與埃里克·康奈尔以及卡爾·威曼,因「在鹼金屬原子稀釋氣體中(製成)玻色-爱因斯坦凝聚的成就,以及關於凝聚特性的早期基礎研究」,共同獲頒2001年诺贝尔物理学奖,三人平分獎金。.

新!!: 诺贝尔物理学奖得主列表和沃爾夫岡·克特勒 · 查看更多 »

泡利不相容原理

在量子力学裏,泡利不--容原理(Pauli exclusion principle)表明,兩個全同的費米子不能處於相同的量子態。這原理是由沃尔夫冈·泡利於1925年通过分析实验結果得到的結論。例如,由於電子是費米子,在一個原子裏,每個電子都擁有獨特的一組量子數n,\ell,m_\ell,m_s,兩個電子各自擁有的一組量子數不能完全相同,假若它們的主量子數n,角量子數\ell,磁量子數m_\ell分別相同,則自旋磁量子數m_s必定不同,它們必定擁有相反的自旋磁量子數。換句話說,處於同一原子軌域的兩個電子必定擁有相反的自旋方向。泡利不--容原理簡稱為泡利原理或不相容原理。 全同粒子是不可区分的粒子,按照自旋分為費米子、玻色子兩種。費米子的自旋為半整數,它的波函數對於粒子交換具有反對稱性,因此它遵守泡利不相容原理,必须用費米–狄拉克統計來描述它的統計行為。費米子包括像夸克、電子、中微子等等基本粒子。 玻色子的自旋為整數,它的波函數對於粒子交換具有對稱性,因此它不遵守泡利不相容原理,它的統計行為只符合玻色-愛因斯坦統計。任意數量的全同玻色子都可以處於同樣量子態。例如,激光產生的光子、玻色-愛因斯坦凝聚等等。 泡利不相容原理是原子物理學與分子物理學的基礎理論,它促成了化學的變幻多端、奧妙無窮。2013年,義大利的格蘭沙索國家實驗室(Laboratori Nazionali del Gran Sasso)團隊發佈實驗結果,違反泡利不相容原理的概率上限被設定為4.7×10-29。.

新!!: 诺贝尔物理学奖得主列表和泡利不相容原理 · 查看更多 »

波利卡普·库施

波利卡普·库施(Polykarp Kusch,1911年1月26日 - 1993年3月20日),德裔美国物理学家,1955年获诺贝尔物理学奖 。 库施于1931年从获得物理学本科学位, 并于1933年从伊犁诺大学获得硕士和博士学校。 他毕业后一直在哥伦比亚大学担任教授。 他在哥伦比亚大学期间指导过的博士生包括后来发明了激光的 。 库施从1972年起在德克萨斯大学达拉斯分校任教,直到1982年退休。.

新!!: 诺贝尔物理学奖得主列表和波利卡普·库施 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: 诺贝尔物理学奖得主列表和波函数 · 查看更多 »

液晶

液晶,即液態晶体(Liquid Crystal,LC),是相態的一種,因為具有特殊的理化與光電特性,20世紀中葉開始被廣泛應用在輕薄型的顯示技術上。 人們熟悉的物質狀態(又稱相)為氣、液、固,較為生疏的是電漿和液晶。液晶相要具有特殊形狀分子組合时會產生,它們可以流動,又擁有結晶的光學性質。液晶的定義,現在已放寬而囊括了在某一溫度範圍可以實現液晶相,在較低溫度為正常結晶之物質。而液晶的組成物質是一種有機化合物,也就是以碳為中心所構成的化合物。同時具有兩種物質的液晶,是以分子間力量組合的,它們具有特殊的光學性質,又對電磁場敏感,極有實用價值。.

新!!: 诺贝尔物理学奖得主列表和液晶 · 查看更多 »

激微波

微波(MASER),音譯為邁射,義譯為激--微波或微波激射器,是受激放大微波辐射(Microwave Amplification by Stimulated Emission of Radiation)的头字母。它指通过受激辐射放大和必要的反馈,产生同一波寬、准直、相干的微波的过程及仪器。 利用激微波原理的「惰性氫微波激射器原子鐘」,可製作「比銣原子鐘精確十倍,每三百萬年還差不到一秒」的原子鐘。.

新!!: 诺贝尔物理学奖得主列表和激微波 · 查看更多 »

激光

雷射(LASER),中國大陸譯成激--光,在港澳台又音譯为镭--射或雷--射,是“通过受激辐射产生的光放大”(Light Amplification by Stimulated Emission of Radiation)的缩写,指通过刺激原子导致电子跃迁释放辐射能量而产生的具有同調性的增强光子束,其特点包括发散度极小,亮度(功率)可以达到很高等。產生激光需要“激發來源”,“增益介質”,“共振结构”這三個要素。.

新!!: 诺贝尔物理学奖得主列表和激光 · 查看更多 »

激光干涉引力波天文台

光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory,缩写:LIGO)是探测引力波的一个大规模物理实验和天文观测台,其在美國華盛頓州的汉福德與路易斯安那州的利文斯頓,分別建有激光干涉儀。利用兩個幾乎完全相同的干涉儀共同進行篩檢,可以大幅度減少誤判假引力波的可能性。干涉儀的靈敏度極高,即使臂長為4千米的干涉臂的長度發生任何變化小至質子的電荷直徑的萬分之一,都能夠被精確地察覺。 LIGO是由美国国家科学基金会(NSF)资助,由加州理工学院與麻省理工学院的物理学者基普·索恩、朗納·德瑞福與莱纳·魏斯領導創建的一个科學项目,兩個學院共同管理與營運LIGO的日常操作。在2002年至2010年之間,LIGO進行了多次探測實驗,蒐集到大量數據,但並未探測到引力波。為了提升探測器的靈敏度,LIGO於2010年停止運作,進行大幅度改良工程。2015年,LIGO重新正式探测引力波。負責组织参与该项目的人員,估計全球約有1000多个科学家參與探測引力波,另外,在2016年12月約有44萬名活跃的Einstein@Home用户。。 在2016年2月11日,和Virgo协作共同发表论文表示,在2015年9月14日检测到引力波信号,其源自於距离地球約13亿光年处的两个質量分別為36太阳质量與29太阳质量的黑洞併合。因為「對LIGO探測器及重力波探測的決定性貢獻」,索恩、魏斯和LIGO主任巴里·巴里什榮獲2017年諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和激光干涉引力波天文台 · 查看更多 »

朝永振一郎

朝永振一郎(,),日本物理學家,量子電動力學的奠基人之一。他也因為這項貢獻與美國物理學家理察·費曼及朱利安·施溫格共同獲得1965年的諾貝爾物理學獎。.

新!!: 诺贝尔物理学奖得主列表和朝永振一郎 · 查看更多 »

本·莫特森

本·莫特森(Ben Roy Mottelson,1926年7月9日芝加哥),美国-丹麦物理学家,1975年,因為發現原子核中集體運動和粒子運動之間的聯繫,並且根據這種聯繫發展了有關原子核結構的理論,與奥格·玻尔、利奧·雷恩沃特共同榮获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和本·莫特森 · 查看更多 »

振荡器

#重定向 电子振荡器.

新!!: 诺贝尔物理学奖得主列表和振荡器 · 查看更多 »

朱利安·施温格

朱利安·西摩·施温格(Julian Seymour Schwinger,),犹太裔美国理论物理学家,量子电动力学的创始人之一,与理查德·费曼、朝永振一郎共获1965年诺贝尔物理学奖。 施温格出生于纽约,16岁就发表了第一篇物理论文。他起先在纽约市立学院求学,后转至哥伦比亚大学学习,师从著名物理学家伊西多·拉比,并于1939年获得博士学位,毕业后在伯克利加州大学和普渡大学任教,并曾一度担任奥本海默的助手;二战期间,施温格从事了有关雷达和加速器的研究;1945年出任哈佛大学教授,但在70年代因有效场论的论点与同事不和,离开哈佛至加州大学洛杉矶分校任教直至退休。.

新!!: 诺贝尔物理学奖得主列表和朱利安·施温格 · 查看更多 »

朱棣文

朱棣文(Steven Chu,),美國華人物理学家,籍貫江苏太仓,生於美國聖路易斯;因「發展了用雷射冷卻和捕獲原子的方法」而獲得1997年諾貝爾物理學獎。前任美國能源部部長。2013年2月1日宣布即将离职,但將留任至續任者獲得同意上任為止。 當朱棣文被任命為能源部長時,他是美國加州大學伯克利分校的物理學和分子和細胞生物學教授,和勞倫斯伯克利國家實驗室的主任,他的研究關心的主要是研究在水平的生物系統。而在此之前,他曾在斯坦福大學教授物理學。他積極主張進行更多對於可再生能源和核能的研究,他认为從化石燃料轉變出來是應對氣候變化的關鍵。Sarah Jane Tribble, Oakland Tribune, 2007-06-18.

新!!: 诺贝尔物理学奖得主列表和朱棣文 · 查看更多 »

戴维·索利斯

戴维·詹姆斯·索利斯,FRS(David James Thouless,),英国凝聚体物理学家,与邓肯·霍尔丹及约翰·科斯特利茨因“在物质的拓扑相变和拓扑相领域的理论性发现”而获得2016年的诺贝尔物理学奖,并曾获得沃尔夫奖。.

新!!: 诺贝尔物理学奖得主列表和戴维·索利斯 · 查看更多 »

戴维·瓦恩兰

戴维·瓦恩兰(David Jeffrey Wineland,),美国物理学家,在科罗拉多州博尔德的美国国家标准与技术局(NIST)物理实验室與科羅拉多大學博爾德分校工作。他的工作主要在量子光學领域,特別是以下方面:.

新!!: 诺贝尔物理学奖得主列表和戴维·瓦恩兰 · 查看更多 »

戴维·李

戴维·莫里斯·李(David Morris Lee),纽约州拉伊),美国物理学家,1996年,因為發現了在氦-3裏的超流動性,與道格拉斯·奧謝羅夫、羅伯特·理查森共同榮获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和戴维·李 · 查看更多 »

戴维·格娄斯

戴维·格娄斯(David Jonathan Gross,),美国理论物理学家,凱維里理論物理研究所教授。他受业于伯克利加州大学的杰弗里·丘教授。 在任教于普林斯顿大学期间,他和他的学生弗朗克·韦尔切克发现了量子色动力学中的渐近自由,由此他们与休·波利策一同分享了2004年度的诺贝尔物理学奖。八十年代中期以来他致力于弦理论的研究。他和,,的杂交弦理论是第一次弦论革命期间的经典文献。它开创了弦理论应用于粒子物理唯象学研究的先声。.

新!!: 诺贝尔物理学奖得主列表和戴维·格娄斯 · 查看更多 »

浮标

浮标,可以是:.

新!!: 诺贝尔物理学奖得主列表和浮标 · 查看更多 »

海克·卡末林·昂內斯

海克·卡末林·昂内斯(Heike Kamerlingh Onnes,),荷兰物理学家,超导现象的发现者,低温物理学的奠基人。.

新!!: 诺贝尔物理学奖得主列表和海克·卡末林·昂內斯 · 查看更多 »

海因里希·罗雷尔

海因里希·罗雷尔(德语:Heinrich Rohrer,),瑞士物理学家,1986年获诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和海因里希·罗雷尔 · 查看更多 »

斯德哥尔摩

斯德哥尔摩(Stockholm,,當地華人有時稱其為斯京),瑞典首都及最大城市,亦是斯德哥尔摩省首府。瑞典王国政府、国会以及瑞典王室的官方宫殿都设在斯德哥尔摩。它位于瑞典的东海岸,濒波罗的海,梅拉伦湖入海处,风景秀丽,是著名的旅游胜地。市区分布在14座岛屿和一个半岛上,70餘座桥梁将这些岛屿联为一体,因此享有“北方威尼斯”的美誉。斯德哥爾摩市區為大斯德哥爾摩的一部分。 从13世纪起,斯德哥尔摩就已经成为瑞典的政治、文化、经济和交通中心。斯德哥尔摩由于免受战争的破坏而保存良好,现在共有100多座博物馆和名胜,包括历史、民族、自然、美术等各个方面。斯德哥尔摩也是一个高科技的城市,拥有众多大学,工业发达。 斯德哥尔摩是阿尔弗雷德·诺贝尔的故乡。从1901年开始,每年12月10日诺贝尔逝世纪念日,斯德哥尔摩音乐厅举行隆重仪式,瑞典国王亲自给获诺贝尔奖者授奖,并在市政厅举行晚宴。.

新!!: 诺贝尔物理学奖得主列表和斯德哥尔摩 · 查看更多 »

放大器

放大器(Amplifier),俗稱音箱,一般而言是指能够使用较小的能量来控制较大能量的任何器件。现在,在日常使用中,这个名词常常是指放大器電路,经常用于音频应用中。 一个放大器的输入输出关系——常常表示为一个与输入频率相关的函数,这个关系称为放大器的传输函数,同时这个传输函数的系数定义为增益。.

新!!: 诺贝尔物理学奖得主列表和放大器 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 诺贝尔物理学奖得主列表和放射性 · 查看更多 »

感光耦合元件

电荷耦合器件(Charge-coupled Device,縮寫:CCD),是一種集成電路,上有許多排列整齊的電容,能感應光線,並將影像轉變成數字信号。經由外部電路的控制,每個小電容能將其所帶的電荷轉給它相鄰的電容。CCD廣泛應用在數位攝影、天文學,尤其是光學遙測技術(photometry)、光學與頻譜望遠鏡,和高速攝影技術如幸運成像。.

新!!: 诺贝尔物理学奖得主列表和感光耦合元件 · 查看更多 »

扫描隧道显微镜

扫描隧道显微镜(scanning tunneling microscope,缩写为STM),是一种利用量子隧穿效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁及海因里希·罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与电子显微镜的发明者恩斯特·鲁斯卡分享了1986年诺贝尔物理学奖。 扫描隧道显微镜技术是扫描探针显微术的一种,基于对探针和表面之间的隧穿电流大小的探测,可以观察表面上单原子级别的起伏。此外,扫描隧道显微镜在低温下可以利用探针尖端精确操纵单个分子或原子,因此它不仅是重要的微纳尺度测量工具,又是颇具潜力的微纳加工工具。.

新!!: 诺贝尔物理学奖得主列表和扫描隧道显微镜 · 查看更多 »

拉塞尔·赫尔斯

拉塞尔·赫尔斯(Russell Hulse,1950年11月28日-),美国物理学家。他和约瑟夫·泰勒共同发现史上第一个位于双星系统脉冲星PSR B1913+16,并通过对其深入研究首次发现引力波存在的间接定量证据, 是对爱因斯坦广义相对论的一项重要验证。赫尔斯也因此和泰勒一同获得1993年诺贝尔物理学奖。.

新!!: 诺贝尔物理学奖得主列表和拉塞尔·赫尔斯 · 查看更多 »

拉曼效应

拉曼效应(Raman effect),也称拉曼散射(Raman scattering),一種光子的非彈性散射現象,1928年由印度物理学家錢德拉塞卡拉·拉曼发现,指光波在被散射后频率发生变化的现象。 當光線從一個原子或分子散射出來時,絕大多數的光子,都是彈性散射的,這稱為瑞利散射。在瑞利散射下,散射出來的光子,跟射入時的光子,它的能量、頻率與波長是相同的。然而,有一小部份散射的光子(大約是一千萬個光子中會出現一個),散射後的頻率會產生變化,通常是低於射入時的光子頻率,原因是入射光子和介質分子之間發生能量交換。這即是拉曼散射。 利用拉曼效應產生的雷射,稱為拉曼雷射。 拉曼散射可以分为两类: 1.

新!!: 诺贝尔物理学奖得主列表和拉曼效应 · 查看更多 »

曼内·西格巴恩

曼内·西格巴恩(Karl Manne Georg Siegbahn,),瑞典物理學家,1924年,他因為發現X射線的光譜,而獲得當年度的諾貝爾物理學獎殊榮。值得一提的是,他的兒子凯·西格巴恩亦是1981年的諾貝爾物理學獎得主。.

新!!: 诺贝尔物理学奖得主列表和曼内·西格巴恩 · 查看更多 »

晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

新!!: 诺贝尔物理学奖得主列表和晶体 · 查看更多 »

晶体管

晶体管(transistor),早期音譯為穿細絲體,是一种-zh-cn:固体; zh-tw:固態;--zh-cn:半导体器件; zh-tw:半導體元件;-,可以用于放大、开关、稳压、信号调制和许多其他功能。在1947年,由約翰·巴丁、沃爾特·布喇頓和威廉·肖克利所發明。當時巴丁、布喇頓主要發明半導體三極體;肖克利則是發明PN二極體,他們因為半導體及電晶體效應的研究獲得1956年諾貝爾物理獎。 電晶體由半導體材料組成,至少有三個對外端點(稱為極),(C)集極、(E)射極、(B)基極,其中(B)基極是控制極,另外兩個端點之間的伏安特性關係是受到控制極的非線性電阻關係。晶体管基于输入的電流或电压,改變輸出端的阻抗 ,從而控制通過輸出端的电流,因此晶體管可以作為電流開關,而因為晶体管輸出信號的功率可以大於輸入信號的功率,因此晶体管可以作為电子放大器。.

新!!: 诺贝尔物理学奖得主列表和晶体管 · 查看更多 »

晶体结构

晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。 Hauy最早提出晶体的規則外型是因为晶體内部原子分子呈規則排列,比如鑽石所具有的完美外形和優良光学性質就可以歸結為其内部原子的規則排列。20世紀初期,勞厄發明X射線衍射法,從此人們可以使用X射线來研究晶體内部的原子排列,其研究结果進而證實了Hauy的判斷。 晶體内部原子排列的具体形式一般稱之为晶格,不同的晶体内部原子排列稱為具有不同的晶格結構。各種晶格結構又可以歸納為七大晶系,各種晶系分别与十四種空間格(稱作布拉维晶格)相對應,在宏观上又可以归结为三十二种空间点群,在微观上可进一步细分为230个空间群。 对于晶体结构的研究是研究固体材料的宏观性质及各种微观过程的基础。專門研究分子結晶結構的科學稱為晶體學,經常應用在化學、生物化學與分子生物學。.

新!!: 诺贝尔物理学奖得主列表和晶体结构 · 查看更多 »

重定向到这里:

諾貝爾物理學獎得主诺贝尔物理学奖获得者

传出传入
嘿!我们在Facebook上吧! »