徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

變分法基本引理

指数 變分法基本引理

在數學裏,特別是在變分法裏,變分法基本引理(fundamental lemma of calculus of variations)是一種專門用來變換問題表述的引理,可以將問題從弱版表述(weak formulation)(變分形式)改變為強版表述(微分形式)。.

9 关系: 引理微分哈密頓原理经典力学歐拉-拉格朗日方程泛函泛函分析数学拉格朗日力学

引理

引理是数学中为了取得某个更好的结论而作为步骤被证明的命题,其意义并不在于自身被证明,而在于为达成最终目的作出贡献。 一个引理可用于证明多个结论。数学中存在很多著名的引理,这些引理可能对很多问题的解决有帮助。例如欧几里得引理,乌雷松引理,德恩引理,法图引理,高斯引理,中山引理,庞加莱引理,里斯引理和佐恩引理等。 引理和定理没有严格的区分。.

新!!: 變分法基本引理和引理 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

新!!: 變分法基本引理和微分 · 查看更多 »

哈密頓原理

在物理學裏,哈密頓原理(Hamilton's principle)是愛爾蘭物理學家威廉·哈密頓於1833年發表的關於平穩作用量原理的表述。哈密頓原理闡明,一個物理系統的拉格朗日函數,所構成的泛函的變分問題解答,可以表達這物理系統的動力行為。拉格朗日函數又稱為拉格朗日量,包含了這物理系統所有的物理內涵。這泛函稱為作用量。哈密頓原理提供了一種新的方法來表述物理系統的運動。不同於牛頓運動定律的微分方程式方法,這方法以積分方程式來設定系統的作用量,在作用量平穩的要求下,使用變分法來計算整個系統的運動方程式。 雖然哈密頓原理本來是用來表述經典力學,這原理也可以應用於經典場,像電磁場或重力場,甚至可以延伸至量子場論等等。.

新!!: 變分法基本引理和哈密頓原理 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

新!!: 變分法基本引理和经典力学 · 查看更多 »

歐拉-拉格朗日方程

歐拉-拉格朗日方程(Euler-Lagrange equation)為變分法中的一條重要方程。它提供了求泛函的臨界值(平穩值)函數,換句話說也就是求此泛函在其定義域的臨界點的一個方法,與微積分差異的地方在於,泛函的定義域為函數空間而不是 \mathbb^n。.

新!!: 變分法基本引理和歐拉-拉格朗日方程 · 查看更多 »

泛函

传统上,泛函(functional)通常是指一種定義域為函數,而值域为实数的「函數」。换句话说,就是从函数组成的一个向量空间到实数的一个映射。也就是说它的输入为函数,而输出为实数。泛函的应用可以追溯到变分法,那里通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。 在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。 设S\ 是由一些函数構成的集合。所谓S\ 上的泛函就是S\ 上的一个实值函数。S\ 称为该泛函的容许函数集。 函数的变换某种程度上是更一般的概念,参见算子。.

新!!: 變分法基本引理和泛函 · 查看更多 »

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

新!!: 變分法基本引理和泛函分析 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 變分法基本引理和数学 · 查看更多 »

拉格朗日力学

拉格朗日力学(Lagrangian mechanics)是分析力学中的一种,于1788年由約瑟夫·拉格朗日所创立。拉格朗日力学是对经典力学的一种的新的理论表述,着重于数学解析的方法,並運用最小作用量原理,是分析力学的重要组成部分。 经典力学最初的表述形式由牛顿建立,它着重於分析位移,速度,加速度,力等矢量间的关系,又称为矢量力学。拉格朗日引入了广义坐标的概念,又运用达朗贝尔原理,求得与牛顿第二定律等价的拉格朗日方程。不仅如此,拉格朗日方程具有更普遍的意义,适用范围更广泛。还有,选取恰当的广义坐标,可以大大地简化拉格朗日方程的求解过程。.

新!!: 變分法基本引理和拉格朗日力学 · 查看更多 »

重定向到这里:

变分法基本引理

传出传入
嘿!我们在Facebook上吧! »