徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

行星环

指数 行星环

行星環是指圍繞著行星運轉的宇宙塵和小顆粒形成扁平盤狀的區域。最廣為人知的行星環就是圍繞著土星的土星環,但是太陽系的其他三顆氣體巨星(木星、天王星和海王星)也都有自己的行星環。 最近的報告 認為土星的衛星麗亞可能也有自己的環系統,它可能成為唯一擁有自己的環系統的衛星。.

26 关系: 原行星盤大碰撞說天王星天王星環太阳系女凱龍星環宇宙塵引力土星土星環冥王星火卫一美國科學促進會類木行星行星衛星麗亞環洛希極限潮汐力木星木星環月球海王星海王星環新视野号旅行者2号

原行星盤

原行星盤(Proplyd or Protoplanetary Disc)是在新形成的年輕恆星(如金牛T星)外圍繞的濃密氣體,因為氣體會從盤的內側落入恆星的表面,所以可以視為是一個吸積盤。但是,不能將這個過程與恆星形成時的吸積混淆在一起。 環繞金牛座T的原行星盤,溫度與大小都與雙星周圍的盤不同。原行星盤的半徑可以達到1,000天文單位,但是溫度並不高,在它們最內側的溫度也不過1,000K,並且經常有噴流伴隨著。 典型的原行星盤來自主要是氫分子的分子雲。當分子雲分得的大小達臨界質量或是密度,將會因自身重力而塌縮。而當雲氣開始塌縮,這時可稱為太陽星雲,密度將變得更高,原本在雲氣中隨機運動的分子,也因而呈現出星雲平均的淨角動量運動方向,角動量守恆導致星雲縮小的同時,自轉速度亦增加。這種自轉也導致星雲逐漸扁平,就像製作意大利薄餅一樣,形成盤狀。從崩塌起約十萬年後,恆星表面的溫度與主序帶上相同質量的恆星相同時,恆星將變得可以被看見,就像金牛座T的情況。吸積盤中的氣體在未來的一千萬年中,盤面消失前,仍會繼續落入恆星。盤面可能是被年輕恆星的恆星風吹散,或僅僅是因為吸積之後,單純的停止輻射而結束。發現的最老的原行星盤已經存在了二千五百萬年之久。 太陽系形成的星雲假說描述原行星盤如何發展成行星系統。靜電和引力互相作用在盤面上的塵埃粒子和顆粒,使它們生常成為星子。這個過程與會將氣體吹散的恆星風競爭,將氣體累積並將物質拉入金牛座T的中心。 在我們的銀河系內,已經觀測到一些年輕恆星周圍的原行星盤。第一個是在1984年發現的繪架座β,最近的則是哈伯太空望遠鏡發現在獵戶座大星雲內正在形成的原恆星盤。 天文學家已經在距離太陽不遠的恆星,天琴座織女星、北冕座貫索四、和南魚座北落師門,發現大量的原行星盤材料,或許本身就已經是原行星盤。 包含織女和北落師門的北河二共同運動星團被分辨出來。利用希巴古衛星資料,估計北河二星團年齡約二億年(誤差約一億年),這顯示以紅外線觀察到的織女和北落師門周圍的殘餘物質可能已成星子,而不僅僅是原行星盤了。哈伯太空望遠鏡已經成功的觀測北落師門的原行星盤,並證實猜測。.

新!!: 行星环和原行星盤 · 查看更多 »

大碰撞說

大碰撞說(Giant impact hypothesis),是一種解釋月球形成原因及過程的假說,也可用於探討金星及火星等类地行星的衛星生成。該假說認為在大約45億年前(或太陽系形成後約2,000萬到1億年前的冥古宙),地球和一顆火星大小的天體發生撞擊,殘留的碎片形成了月球。這顆撞擊地球的天體被稱為忒伊亞(Theia),這名字是希臘泰坦神話裡月神塞勒涅的母親之名。 大碰撞說是目前最受青睞的科學假說,支持的證據包括:地球自轉和月球公轉方向相同、月球曾擁有熔融態的表面、月球擁有較小的鐵核且其密度比地球低、由其他行星系統發生類似碰撞所得到的證據(即導致岩屑盤)、符合主流的太陽系形成理論。最後,月球和地球岩石擁有的穩定同位素比率是相同的,這意味著相同的起源。 儘管為目前最佳的月球形成假說,大碰撞說仍存在一些缺陷。理論上,大碰撞產生的高溫會形成全球性的岩漿海,然而,沒有證據能證明較重的物質因此沈入地幔。目前,沒有模型能對於從發生大碰撞到形成月球的過程作出完美解釋。其他問題包括,月球何時開始失去揮發性物質、以及同樣發生過碰撞的金星為何沒有衛星。.

新!!: 行星环和大碰撞說 · 查看更多 »

天王星

天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.

新!!: 行星环和天王星 · 查看更多 »

天王星環

天王星環是由直徑小於10米的黑暗顆粒物質組成的暗淡環系統,是繼土星環之後,在太陽系內第二個被人類發現的行星環系統。 已知的13個清晰的環中,最亮的是ε環。(re study by Stuart Eves).

新!!: 行星环和天王星環 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 行星环和太阳系 · 查看更多 »

女凱龍星環

女凱龍星環是圍繞直徑約250公里的半人馬小行星女凱龍星(小行星10199)的環系統,包含兩道狹窄但密集的環,寬度分別為6到7公里和2到4公里,相距9公里。女凱龍星環距離女凱龍星幾何中心400公里,約月球和地球距離的千分之一。它們是被歐洲南方天文台設於巴西、阿根廷和智利的天文台群在2013年6月3日的一次恆星掩星事件中發現,並於2014年3月26日公布。使女凱龍星成為唯一已知有環的小行星,並且是太陽系第五個被發現的環系統和太陽系目前擁有環的天體中體積最小者。 女凱龍星環的發現是一項出乎科學家意料的發現,因為一般認為只有在質量更大許多的天體才會有穩定的環系統。在這之前無論是以直接攝影或掩星都沒有發現小行星的環系統。目前仍不知道女凱龍星能維持環系統長期存在的原因,但小型牧羊犬衛星的存在可以限制環系統的範圍。發現的小組暱稱這兩道環是「Oiapoque」和「」,分別是巴西北部和南部靠著海邊的河流,稍後會向IAU提交正式的名稱。.

新!!: 行星环和女凱龍星環 · 查看更多 »

宇宙塵

宇宙塵(Cosmic Dust)是由眾多細小粒子組成的一種固態塵埃,自宇宙大爆炸起,便四散在浩瀚宇宙之中。宇宙塵的組成包含矽酸鹽、碳等元素以及水分,部分來自彗星、小行星等星體的崩解而產生。 宇宙塵對一個天體的誕生亦有影響,例如一個星體崩壞後所產生的宇宙塵,在經過漫長的宇宙旅程後,可能與一個正在形成的星體撞上,於是又循環成為了一個新的星體。在太陽系中,木星、土星、天王星、海王星等行星的光環,即是由於在行星初形成時,碎裂的宇宙塵未能融為星球的主體,但卻又無法擺脫行星萬有引力的牽制而產生圍繞著星球的破碎物質。.

新!!: 行星环和宇宙塵 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 行星环和引力 · 查看更多 »

土星

土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.

新!!: 行星环和土星 · 查看更多 »

土星環

土星環是太陽系行星的行星環中最突出與明顯的一個,環中有不計其數的小顆粒,其大小從微米到米都有,軌道成叢集的繞著土星運轉。環中的顆粒主要成分都是水冰,還有一些塵埃和其它的化學物質。 雖然環的反射能夠增加土星的視星等(亮度),但從地球僅憑肉眼還是看不見環。在1610年,當望遠鏡第一次指向天空之際,伽利略雖然未能清楚的看出環的本質,但他還是成為觀察土星環的第一個人。在1655年,惠更斯成為第一個描述環是環繞土星的盤狀物的人。 雖然許多人都認為土星環是由許多微細的小環累積而成的(這個觀念可以回溯至拉普拉斯),並有少數真實的空隙。更正確的想法是這些環是有著同心但是在密度和亮度上有著極值的圓環盤。在叢集的尺度上,圓環之間有許多空洞的空間。 在環的中間有一些空隙:有兩條已經知道是與被埋藏在環中的衛星產生軌道共振引起的波動造成的,其它的空隙還不知道成因。穩定的共振,另一方面,也維繫了一些環長期的存在,像是泰坦環。.

新!!: 行星环和土星環 · 查看更多 »

冥王星

冥王星(小行星序号:134340 Pluto。天文代號:♇,Unicode編碼U+2647)是柯伊伯带中的矮行星。冥王星是第一颗被发现的柯伊伯带天体。冥王星是太阳系内已知体积最大、质量第二大的矮行星。在直接围绕太阳运行的天体中,冥王星体积排名第九,质量排名第十。冥王星是体积最大的海王星外天体,其质量仅次于位于离散盘中的阋神星。与其他柯伊伯带天体一样,冥王星主要由岩石和冰组成。冥王星相对较小,仅有月球质量的六分之一、月球体积的三分之一。冥王星的轨道离心率及倾角皆较高,近日点为30天文单位(44亿公里),远日点为49天文单位(74亿公里)。冥王星因此周期性进入海王星轨道内侧。海王星与冥王星因相互的轨道共振而不会碰撞。在冥王星距太阳的平均距离上阳光需要5.5小时到达冥王星。 1930年克莱德·汤博发现冥王星,并将其视为第九大行星。1992年后在柯伊伯带发现的一些质量与冥王星相若的冰制天体挑战冥王星的行星地位。2005年发现的阋神星质量甚至比冥王星质量多出27%,国际天文联合会(IAU)因此在翌年正式定义行星概念。新定义将冥王星排除行星范围,将其划为矮行星(類冥矮行星)。 冥王星目前已知的卫星总共有五颗:冥卫一、冥卫二、冥卫三、冥卫四、冥卫五。冥王星与冥卫一的共同质心不在任何一天体内部,因此有时被视为一联星系统。IAU并没有正式定义矮行星联星,因此冥卫一仍被定义为于冥王星的卫星。 2015年7月14日新视野号探测器成为首架飞掠冥王星的宇宙飞船。在飞掠的过程中,新视野号对冥王星及其卫星进行细致的观测。.

新!!: 行星环和冥王星 · 查看更多 »

火卫一

火卫一又稱為「福波斯」(英語:Phobos;Φόβος;系統名稱:),是火星的两颗自然卫星中,距离火星较近且较大的一颗,平均半径为11.1km,是另一颗卫星火卫二的7.24倍。火卫一的名字是福波斯(意思是害怕),是希腊神话中的战神阿瑞斯(在罗马神话中名叫玛尔斯)之子。 火卫一是一个形状不规则的小天体。围绕火星运动,轨道距火星中心约9400km,也就是距离火星表面6000km。火卫一到其母星的距离,比其他已知行星的卫星都要近。火卫一是太阳系中反射率最低的天体之一。火卫一上有一个巨大的撞击坑,叫斯蒂克尼撞击坑。由于轨道离火星很近,火卫一的转动快于火星的自转。因此,从火星表面看,火卫一从西边升起,在4小时15分钟或更短的时间内划过天空,在东边落山。由于轨道周期短以及潮汐力的作用,火卫一的轨道半径會逐渐变小,最终它将撞到火星表面,或者破碎形成火星环。.

新!!: 行星环和火卫一 · 查看更多 »

美國科學促進會

美國科學促進會(American Association for the Advancement of Science,缩写为AAAS),創建於1848年9月20日,是世界最大的非營利科學組織,下設21個專業分會,所涉包括數學、物理学、化學、天文学、地理学、生物学等自然科學学科。現有265個分支機構和1000萬成員。《科學》雜誌的主辦者、出版者。.

新!!: 行星环和美國科學促進會 · 查看更多 »

類木行星

#重定向 氣態巨行星.

新!!: 行星环和類木行星 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: 行星环和行星 · 查看更多 »

衛星

衛星,是環繞一顆行星按閉合軌道做周期性運行的天體。如地球的衛星是月球。不過,如果兩個天體的質量相當,它們所形成的系統一般稱為雙行星系統,而不是一顆行星和一顆天然衛星。通常,兩個天体的质量中心都處於行星之內。因此,有天文學家認為冥王星與冥衛一應該歸類為雙行星,但2005年發現兩顆新的冥衛,使問題複雜起來了。.

新!!: 行星环和衛星 · 查看更多 »

麗亞環

土星的衛星麗亞(土衛五)可能有一個稀疏的環系統,包含有三條狹窄、相對來說是密集微粒組成的盤面。此一發現公布在2008年3月6日的《科學雜誌》,這可能是被發現的第一個環繞著衛星的環系統。 在2005年的11月,卡西尼軌道船發現土星的磁氣層在麗亞附近有高能量的電子。根據發現的團隊說明,最好的解釋模式是假設電子被固體的物體吸附在它赤道的盤面上,這些可以包含密集的圓環或弧,而微粒的直徑可以從幾公分至接近1米。.

新!!: 行星环和麗亞環 · 查看更多 »

洛希極限

洛希極限(Roche limit)是一個天體自身的重力与第二個天體造成的潮汐力相等时的距離。當两个天體的距離少於洛希極限,天體就會傾向碎散,繼而成為第二個天體的環。它以首位計算這個極限的人愛德華·洛希命名。 洛希極限常用于行星和环绕它的衛星。有些天然和人工的衛星,儘管它們在它們所環繞的星體的洛希極限內,卻不至成碎片,因為它們除了引力外,還受到其他的力。木衛十六和土衛十八是其中的例子,它們和所環繞的星體的距離少於流體洛希極限。它們仍未成為碎片是因為有彈性,加上它們並非完全流體。在這個情況,在衛星表面的物件有可能被潮汐力扯離衛星,要視乎物件在衛星表面哪部分——潮汐力在兩個天體中心之間的直線最強。 一些內部引力較弱的物體,例如彗星,可能在經過洛希極限內時化成碎片。蘇梅克-列維9號彗星就是好例子。它在1992年經過木星時分成碎片,1994年落在木星上。 現時所知的行星環都在洛希極限之內。.

新!!: 行星环和洛希極限 · 查看更多 »

潮汐力

潮汐力或引潮力是萬有引力的效果,它使得潮汐發生。它源於在一個星體的直徑上各點的引力場不相等。 當一個天體甲受到天體乙的引力的影響,力場在甲面對乙跟背向乙的表面的作用,有很大差異。這使得甲出現很大應變,甚至會化成碎片(參見洛希極限)。除非引力場完全相等,否則這些應變還是會出現。 潮汐力會改變天體的形狀而不改變其體積。地球的每部分都受到月球的引力影響而加速,在地球的觀察者因此看到海洋內的水不斷重新分布。 當天體受潮汐力而自轉,內部摩擦力會令其旋轉動能化為內能,內能繼而轉成熱。若天體相當接近系統內質量最大的天體,自轉的天體便會以同一面朝質量最大的天體公轉,即潮汐鎖定,例如月球和地球。.

新!!: 行星环和潮汐力 · 查看更多 »

木星

|G1.

新!!: 行星环和木星 · 查看更多 »

木星環

木星環,是指圍繞在木星周圍的行星環系統。它是太陽系第三個被發現的行星環系統,第一個和第二個分別是土星環及天王星環。木星環首次被觀測到是在1979年,由航海家一號發現及在1990年代受到伽利略號進行詳細調查。木星環在25年來亦可以由哈勃太空望遠鏡及地球觀察。在地上需要現存最大的望遠鏡才能夠進行木星環的觀察。 隱約的木星環系統主要由塵埃組成。木星環分成四個部分:厚厚的粒子環面內晕層稱為“光環”;一個相對光亮的而且特別薄的“主環”;以及兩個外部既厚又隱約的“薄紗環”(或称“蛛网环”),其名稱由形成她們的物質的衛星而來:木衛五(阿馬爾塞)和木衛十四(底比斯)。 木星環的主環及光環由衛星木衛十六(墨提斯)、木衛十五(阿德剌斯忒亞)及其他不能觀測的主體因為高速撞擊而噴出的塵埃組成。在2007年二月至三月由新視野號取得的高解像度圖像顯示主環有豐富的精細結構。 在可見光及近紅外線光線下,除了光環呈現灰色或藍色外,木星環會呈現紅色。在環內的塵埃大小不定,但是所有環除了光環以外的塵埃橫切面面積最大為半徑約15微米的非球體粒子。光環主要由亞微米級塵埃組成。環狀系統的主要質量(包括不可見的主體)約為1016 公斤,和木衛十五質量相當。環狀系統的年齡不詳,但是可能在木星形成時已經存在。.

新!!: 行星环和木星環 · 查看更多 »

月球

没有描述。

新!!: 行星环和月球 · 查看更多 »

海王星

海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.

新!!: 行星环和海王星 · 查看更多 »

海王星環

海王星环總共包含5個主要的行星環,且它們最早是由天文學家帕特里斯·布歇、萊因霍爾德·哈夫納和讓·曼弗雷德於1984年在智利拉西拉天文台發現的。而這些環的第一張照片則是於1989年由旅行者2号飞船拍攝的。十分微弱,由尘土构成,很像木星环或天王星环,但要比木星环纖細得多。這5個環後來分別以對發現海王星作出重大貢獻的5個人命名。他們分別是约翰·格弗里恩·伽勒、奥本·勒维耶、威廉·拉塞尔、弗朗索瓦·阿拉戈和约翰·柯西·亚当斯。 海王星环的组成物质非常黑暗,類似於天王星環。环裡的灰塵比例較高,且其光学深度較低,小于0.1。亚当斯环分为五个環弧,又逆時針方向分別被命名为博爱,平等1和平等2,自由,和勇气。弧占据范围狭窄,轨道经度非常稳定。环弧如何保持稳定仍在进行辩论。.

新!!: 行星环和海王星環 · 查看更多 »

新视野号

新視野號(New Horizons)又譯新地平線號,是美國國家航空暨太空總署旨在探索矮行星冥王星(在發射時間仍然被認為是一顆行星)和柯伊伯带的行星際機器人太空船任務,它是第一艘飛越和研究冥王星和它的衛星,凱倫、尼克斯和許德拉的太空探測器。NASA可能還會批准它飛越一個或两個古柏帶天體。任務概要是由美国西南研究院首席研究員所領導的一個團隊提出。 經過在發射地點的幾個延誤後,新視野號于2006年1月19日在卡纳维拉尔角發射,直接進入地球和太陽逃逸軌道,在最後關閉引擎時相對於地球的速度是16.26公里/秒,或58,536公里/小時(10.10英里/秒或36,373英里/小時)。因此,它是有史以來以最快的發射速度離開地球的人造物體。2015年7月14日新视野号飛越冥王星系统。随后,新視野號将繼續進入古柏帶。 經過與小行星132524 APL一個短暫的相遇後,新視野號飛往木星,在2007年2月28日使得其最接近木星的距離为。木星飛掠提供重力助推给新視野號的速度增加了。木星相遇也被用來作為新視野號科技性能的全面測試,傳回關於行星的大氣層,衛星和磁層的數據。在飛掠木星後,探測器繼續前往冥王星。在木星後的大部分旅行中,太空船是处于休眠模式度過,以保護太空船上的系統。在2006年9月,新視野號第一次拍攝了冥王星,其次是在2013年7月拍攝了區分冥王星和它的衛星冥卫一作為兩個單獨的對象的圖像。無線電信號从新視野號太空船旅行到地球需要用4個多小時。 格林威治時間2015年7月14日上午11時49分,新視野號接近冥王星12,500公里,為旅程中最接近冥王星的位置。 它成為了第一艘探索冥王星的航天器。 協調世界時7月15日00時52分37秒(美國東部時間7月14日20時52分37秒),美國國家航空暨太空總署收到了新視野號傳來的訊息,證實了探測器在預定的時間成功地飛越了冥王星,探測器各方面的運作一切正常,和先前預料的一樣。.

新!!: 行星环和新视野号 · 查看更多 »

旅行者2号

旅行者2号(Voyager 2)是一艘於1977年8月20日發射的美國太空總署無人星際太空船。它與其姊妹船旅行者1號基本上設計相同。不同的是旅行者2號循一個較慢的飛行軌跡,使它能夠保持在黃道(即太陽系眾行星的軌道水平面)之中,藉此在1981年的時候透過土星的引力加速飛往天王星和海王星。正因如此,它並沒有像它的姊妹旅行者1號一樣能夠如此靠近土衛六。但它因此而成為了第一艘造訪天王星和海王星的太空船,完成了藉這個176年一遇的行星幾何排陣而造訪四顆氣體巨行星的機會。 旅行者2號被認為是從地球發射的太空船中最多產的一艘太空船,皆因在美國太空總署對其後的伽利略號和卡西尼-惠更斯號等的計劃上收緊花費之下,它仍能以強大的攝影機及大量的科學儀器造訪四顆氣體巨行星(木星、土星、天王星、海王星)及其衛星。.

新!!: 行星环和旅行者2号 · 查看更多 »

重定向到这里:

牧羊犬卫星行星環

传出传入
嘿!我们在Facebook上吧! »