徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

薩德伯里微中子觀測站

指数 薩德伯里微中子觀測站

薩德伯里微中子觀測站(Sudbury Neutrino Observatory,缩写为SNO)是位於加拿大安大略省薩德伯里2100米深的镍矿中的中微子觀測站。因為對於中微子振盪的發現做出重大貢獻,SNO實驗主任阿瑟·麥克唐納榮獲2015年諾貝爾物理學獎。薩德伯里微中子觀測站的建立是為了要研究太陽中微子問題。觀測站的中微子探測器主要是用來探測太陽中微子,通過它們與重水的相互作用。探測器從1999年5月開始啟用,直到2006年11月為止。雖然探測器已停止運作,在未來數年中,SNO團隊仍會繼續分析在那段時期獲得的數據。現今(2015年),已被擴充的地下實驗室仍舊繼續被用來進行其它SNOLAB實驗。SNO的設備正在整修,準備未來用於實驗。.

38 关系: 加拿大壓克力大薩德伯里太陽中微子契忍可夫輻射宇宙線安大略省富蘭克林獎章中子中微子中性流伽马射线切连科夫效应味 (粒子物理學)净室光电倍增管离解爾灣加州大學电子诺贝尔物理学奖質子超级神冈探测器超新星輻照度薩德伯里微中子觀測站實驗室银河系重水電子伏特電性流Τ子SNOLABW及Z玻色子標準太陽模型氦-3浮力

加拿大

加拿大(英语、法语:Canada,IPA读音:(英)(法))为北美洲国家,西抵太平洋,东至大西洋,北滨北冰洋,东北方与丹麦领地格陵兰相望,东部与圣皮埃尔和密克隆相望,南方及西北方与美国接壤。加拿大的领土面积达998万平方公里,为全球面积第二大国家。加拿大素有「枫叶之国」的美誉,渥太华为该国首都。 加拿大在1400年前即有原住民在此生活。15世纪末,英国和法国殖民者开始探索北美洲的东岸,并在此建立殖民地。1763年,当七年战争结束后,法国被迫将其几乎所有的北美殖民地割让予英国。在随后的几十年中,英国殖民者向西探索至太平洋地区,并建立了数个新的殖民地。1867年7月1日,1867年宪法法案通过,加拿大省、新不伦瑞克、新斯科舍三个英属北美殖民地组成加拿大联邦,其中加拿大省分裂为安大略和魁北克。在随后100多年里,其它英属北美殖民地陆续加入联邦,组成现代加拿大。 加拿大是实行聯邦制、君主立憲制及議會制的國家,由十个省和三个地区组成,英国女王伊丽莎白二世為國家元首及加拿大君主,而加拿大總督為其及政府的代表。加拿大是双语国家,英语和法语为官方语言,原住民的語言被認定為第一語言。由於位於高緯度地廣人稀,该国是世界上擁有多元化種族及文化的國家,也是移民為主的国家,约五分之一的国民出生于境外,近年來移民大部分來自亞洲。 得益於豐富的自然資源和高度發達的科技,加拿大是富裕、经济发达的国家。以国际汇率计算,加拿大的人均国内生产总值在全世界排名第十六,人类发展指数排名第十。它在教育、政府的透明度、自由度、生活品质及经济自由的都名列前茅。积极参与国际事务,是联合国、北大西洋公約組織、北美空防司令部、七大工業國組織、二十国集团、英联邦、经济合作与发展组织、及太平洋岛国论坛的成员。.

新!!: 薩德伯里微中子觀測站和加拿大 · 查看更多 »

壓克力

壓克力(acrylic),香港稱「阿加力」可能指以下事物:.

新!!: 薩德伯里微中子觀測站和壓克力 · 查看更多 »

大薩德伯里

大薩德伯里(Greater Sudbury;Grand Sudbury)是加拿大安大略省北部一座城市,離首都渥太華西北偏西約483公里,省府多倫多西北偏北約390公里,四方被薩德伯里區包圍但並不隸屬該區或其他安大略省行政區劃,為一個單層次自治區。據2011年加拿大人口普查所示,大薩德伯里市内人口為160274人,在全國排名第29位;都會區人口則達160770人,在全國排名第24位,全省排名第10位,並是安省北部人口最多的城市和都會區。.

新!!: 薩德伯里微中子觀測站和大薩德伯里 · 查看更多 »

太陽中微子

#重定向 太陽微中子.

新!!: 薩德伯里微中子觀測站和太陽中微子 · 查看更多 »

契忍可夫輻射

契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.

新!!: 薩德伯里微中子觀測站和契忍可夫輻射 · 查看更多 »

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

新!!: 薩德伯里微中子觀測站和宇宙線 · 查看更多 »

安大略省

安大略省(英语、法语:Ontario),簡稱安省,位于加拿大的東部,面積約100萬平方公里,加拿大的首都渥太华也在安大略省。安大略是加拿大人口最多的省份,根據2015年7月統計数据显示,安大略人口大約有1379萬。.

新!!: 薩德伯里微中子觀測站和安大略省 · 查看更多 »

富蘭克林獎章

富兰克林奖章是美国宾夕法尼亚州费城富兰克林研究所于1915年至1997年间颁发的奖项。塞缪尔·因萨尔于1914年设立了这一奖项。 富兰克林奖章是富兰克林研究所最知名的奖项之一。 1998年,富兰克林奖章与其他几个奖项合并为本杰明·富兰克林奖章。.

新!!: 薩德伯里微中子觀測站和富蘭克林獎章 · 查看更多 »

中子

| magnetic_moment.

新!!: 薩德伯里微中子觀測站和中子 · 查看更多 »

中微子

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。.

新!!: 薩德伯里微中子觀測站和中微子 · 查看更多 »

中性流

中性流(Neutral current)是次原子粒子相互作用現象之一,這些相互作用由Z玻色子所引發。弱中性流的發現是弱力與電磁力(弱電理論)統一的重要關鍵,並導致W及Z玻色子最終被發現。 1973年,阿卜杜勒·薩拉姆、謝爾登·格拉肖以及史蒂文·溫伯格預測中性流存在,隨後加爾加梅勒的氣泡室實驗觀察到中性流作用。.

新!!: 薩德伯里微中子觀測站和中性流 · 查看更多 »

伽马射线

伽瑪射線(Gamma ray),或γ射線是原子衰變裂解時放出的射線之一。此種電磁波波長在0.01奈米以下,穿透力很強,又攜帶高能量,容易造成生物體細胞內的脫氧核糖核酸(DNA)斷裂進而引起細胞突變,因此也可以作醫療之用。 1900年由法國科學家P.V.維拉德(Paul Ulrich Villard)發現,他將含鐳的氯化鋇通過陰極射線,從照片記錄上看到輻射穿過0.2毫米的鉛箔,拉塞福稱這一貫穿力非常強的輻射為γ射線,是繼α射線、β射線後發現的第三種原子核射線。1913年,γ射線被證實為是電磁波,波長短于0.2 埃,和X射線特性相似但具有比X射線還要強的穿透能力。γ射線通過物質並與原子相互作用時會產生光電效應、康普頓效應和正負電子對效應。γ射线即使使用较厚材料阻挡一般也仍然有部分射线泄漏,所以通常只能用半吸收厚度来定量材料的阻隔效果。半吸收厚度是指入射射线强度减弱到一半时阻隔物体的厚度。半吸收厚度其数值d(1/2).

新!!: 薩德伯里微中子觀測站和伽马射线 · 查看更多 »

切连科夫效应

#重定向 契忍可夫輻射.

新!!: 薩德伯里微中子觀測站和切连科夫效应 · 查看更多 »

味 (粒子物理學)

在粒子物理學中,味或風味(英文︰Flavour)是基本粒子的一種量子數。在量子色動力學中,味是一種總體對稱。另一方面,在電弱理論中,這種對稱被打破,因此存在味變過程,例如夸克衰變或中微子振盪。.

新!!: 薩德伯里微中子觀測站和味 (粒子物理學) · 查看更多 »

净室

--,又稱--、潔淨室或清淨室,是指一个具有低污染水平的环境,這裡所指的污染來源有灰尘,空气传播的微生物,悬浮颗粒,和化学挥发性气体。更准确地讲,一个净室具有一个受控的污染级别,污染级别可用每立方米的颗粒数,或者用最大颗粒大小来厘定的。低级別的净室通常是没有经过消毒的(如没有受控的微生物),更在意的是無塵室中的灰尘。 淨室的定義為:將空間範圍內之空氣中的微塵粒子等污染物排除,而得到一個相當潔淨的環境。亦即:這個環境中的微塵粒子相當少,稱之為無塵室。净室被廣泛地應用在對環境污染特別敏感的行業,例如半導體生產、生化技術、生物技術、精密機械、製藥、醫院等行業等,其中以半導體業其對室內之溫濕度、潔淨度要求尤其嚴格、故其必需控制在某一個需求範圍內,才不會對製程產生影響。作為生產設施,净室可以佔據廠房很多位置。.

新!!: 薩德伯里微中子觀測站和净室 · 查看更多 »

光电倍增管

光电倍增管(Photomultiplier,簡稱PMT),是一种對紫外光、可見光和近紅外光極其敏感的特殊真空管。它能使進入的微弱光信號增強至原本的108倍,使光信號能被測量。.

新!!: 薩德伯里微中子觀測站和光电倍增管 · 查看更多 »

离解

离解又稱解離,在化学中,指化合物分裂而形成离子或原子团的过程。.

新!!: 薩德伯里微中子觀測站和离解 · 查看更多 »

爾灣加州大學

#重定向 加州大學爾灣分校.

新!!: 薩德伯里微中子觀測站和爾灣加州大學 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 薩德伯里微中子觀測站和电子 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 薩德伯里微中子觀測站和诺贝尔物理学奖 · 查看更多 »

質子

|magnetic_moment.

新!!: 薩德伯里微中子觀測站和質子 · 查看更多 »

超级神冈探测器

超级神冈探测器(Super-Kamiokande,可縮寫為Super-K或SK;スーパーカミオカンデ),全名為超級神岡中微子探測實驗(Super-Kamioka Neutrino Detection Experiment),是日本東京大學在岐阜縣飛驒市神岡町的茂住礦山一个深达1000米的废弃砷矿中建造的大型中微子探测器。其目标是探测质子衰变以及被设计来寻找太阳、地球大气的中微子,并观测銀河系內超新星爆发。.

新!!: 薩德伯里微中子觀測站和超级神冈探测器 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 薩德伯里微中子觀測站和超新星 · 查看更多 »

輻照度

在光學裏,輻照度(irradiance)是電磁輻射入射於曲面時每單位面積的功率。輻射出射度(radiant emittance,radiant exitance)是從曲面輻射出的功率每單位面積。採用國際單位制,這些物理量的單位為瓦特每平方米(W/m2),採用CGS單位制,這些物理量的單位為爾格每平方厘米每秒(erg·cm−2·s−1,常用於天文學)。 物理学中,代表单位面积功率的物理量常被稱為強度,但這用法會與輻射強度(单位立体角内的辐射通量)引起混淆。特别在光学和激光物理学中,辐照度也被叫做光强。 輻照度表示各種頻率輻射的總量。物理學者時常也會分開檢驗輻射頻譜的每一單獨頻率。假設對於入射於曲面的輻射做這動作,則稱這輻射為光譜輻照度(spectral irradiance),國際單位制的單位為W/m2。 假設一個點光源均勻地朝著所有方向傳播光波,則輻照度按照平方反比定律遞減。.

新!!: 薩德伯里微中子觀測站和輻照度 · 查看更多 »

薩德伯里微中子觀測站實驗室

薩德伯里中微子觀測站實驗室(SNOLAB,簡稱為「薩實驗室」)是位於加拿大安大略省薩德伯里2100米深的镍矿中的地下物理實驗室。原本位於此處的薩德伯里微中子觀測站(Sudbury Neutrino Observatory,縮寫為SNO)實驗計畫已結束,但其設施已被擴張成為永久物理實驗室。 薩實驗室乃是全世界在地下比較深處的幾個實驗設施之一。在地下2316米深處因礦場關閉而於1992年終止運作。正在計畫中的實驗室也已大幅度縮減,由於國家科學基金會拒絕負擔主要開支。2010年開始運作的中国锦屏地下实验室在那時是全世界最深的地下實驗室,緲子通量低於0.2 μ/m²/day ,薩實驗室的緲子通量為0.27 μ/m²/day。 (與之相比,在海平面,緲子通量大約為15 million μ/m²/day。) 雖然與礦坑相連通,實驗室本身維持於級別2000標準的潔淨室狀況,即尺寸不小於1μm的粒子少於2000個每1 m3空氣,背景輻射也很低.在其上方有2070 m石頭,約6010 (MWE)的屏蔽,足可擋去大部分的宇宙射線,是設置高與超低計數率實驗夢寐以求的良好環境。.

新!!: 薩德伯里微中子觀測站和薩德伯里微中子觀測站實驗室 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 薩德伯里微中子觀測站和银河系 · 查看更多 »

重水

重水(或称氘代水,化学式D2O或者2H2O)是水的一種,它的摩尔质量比一般水要重。普通的水(H2O)是由兩個只具有質子的氫原子和一個氧16原子所組成,但在重水分子內的兩個氫同位素氘,比一般氫原子有各多一個中子,因此造成重水分子的質量比一般水要重。地球上的水大約有 6,400分之一是半重水(HDO)。 由於普通水和重水都是由相同數量的氫和氧原子組成,兩者的化學反應皆會接近相同。但在物理上,重水的凝固点(即固態水的熔點)和沸點比普通水稍高,在一個大氣壓力下,重水的凝固點是攝氏3.82度,沸點是攝氏101.4度,密度為1.1056g/cm3。 有另一種重水稱為半重水,HDO,它只有一個氫原子是多一個中子的重氫。一般的半重水都並不純正,通常是50%HDO,25%的H2O 及 25%的D2O。除了由重氫組成的重水分子外,還有一種由重氧原子(氧17或氧18)組成的重水分子,稱為「重氧水」。由於分離出重氧水分子的難度較高,因此提煉純正重氧水的成本會比重氫水為高。.

新!!: 薩德伯里微中子觀測站和重水 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

新!!: 薩德伯里微中子觀測站和镍 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

新!!: 薩德伯里微中子觀測站和電子伏特 · 查看更多 »

電性流

#重定向 带电流.

新!!: 薩德伯里微中子觀測站和電性流 · 查看更多 »

Τ子

--(tauon),又稱--、--,是帶負電荷、自旋的基本粒子,標記為,由馬丁·佩爾實驗團隊於1975年發現。陶子、電子、緲子與對應的三種中微子,都歸屬於輕子;陶子是第三代輕子,電子是第一代,緲子是第二代。對應於陶子的中微子稱為陶中微子。陶子的反粒子稱為反陶子,帶正電荷,其壽命、質量、自旋都和陶子相同,標記為。 陶子的半衰期為,質量為(稍加比較,電子的質量為,緲子的質量為)。陶子的相互作用與電子非常類似,陶子可以視為電子的特大質量版本。由於陶子的特大質量,陶子發射出的軔致輻射比電子少很多,因此,陶子比電子更具有穿透性,但是陶子的壽命很短,陶子的移動範圍主要是由衰變長度設定,由於數值過小,很難觀察到軔致輻射。只有在超高能量時,即能量超過PeV時,才能觀察到陶子的穿透性。.

新!!: 薩德伯里微中子觀測站和Τ子 · 查看更多 »

SNOLAB

#重定向 薩德伯里微中子觀測站實驗室.

新!!: 薩德伯里微中子觀測站和SNOLAB · 查看更多 »

W及Z玻色子

在物理學中,W及Z玻色子(boson)是負責傳遞弱核力的基本粒子。它們是1983年在歐洲核子研究組織發現的,被認為是粒子物理標準模型的一大勝利。 W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子則半幽默地因是“最後一個要發現的粒子”而名。另一個說法是因Z玻色子有零(Zero)電荷而得名。.

新!!: 薩德伯里微中子觀測站和W及Z玻色子 · 查看更多 »

標準太陽模型

標準太陽模型(Standard Solar Model,SSM)是借助於數學模型處理的球形氣體太陽(在不同狀態的電離,在內部深層的氫被完全電離成為電漿)。這個模型從技術上說是球對稱的一顆準靜態恆星模型,描述恆星結構的幾個微分方程都源自於物理的基本原則。這個模型受到邊界條件(即亮度、半徑、年齡和構造)的約束。太陽的年齡不能直接測量;一種方法是從最老的隕石年齡,和太陽系演化的模型來估計。现在太陽光球层中氢的质量占74.9%,氦占23.8%.

新!!: 薩德伯里微中子觀測站和標準太陽模型 · 查看更多 »

氦-3

氦-3,是氦的同位素之一,元素符號為3He。它的原子核由二顆質子和一顆中子所組成。是穩定同位素。其相對豐度是0.000137%。一般相信,月球表面的風化層(表皮土)富含著大量的氦-3。.

新!!: 薩德伯里微中子觀測站和氦-3 · 查看更多 »

氯是一种卤族化学元素,化学符号為Cl,原子序数為17。.

新!!: 薩德伯里微中子觀測站和氯 · 查看更多 »

氘(注音:ㄉㄠ;拼音:dāo(1);客家話:dao(1);粵語:dou(1);台語:to(1);英语:Deuterium)為氢的一种穩定形態同位素,又称重氢,元素符号一般为D或2H。它的原子核由一颗质子和一颗中子组成。在大自然的含量约为一般氢的7000分之一。.

新!!: 薩德伯里微中子觀測站和氘 · 查看更多 »

浮力

浮力(buoyancy 或 upthrust),物理学名词。一般指物理体在流体(包括液体和气体)中,各表面受流体(液体和气体)压力的差(合力)。浮力的单位是牛顿(N)。.

新!!: 薩德伯里微中子觀測站和浮力 · 查看更多 »

重定向到这里:

薩德伯里中微子觀測站

传出传入
嘿!我们在Facebook上吧! »